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Abstract

The Linear Quadratic Regulator (LQR) can guarantee a

robust closed loop eigenstructure for full state feedback.

The algorithm developed here takes advantage of the stability

guarantees of LQR to achieve an eigenstructure close to

desired but within the allowable region of LQR. The algorithm

selects the LQR weighting matrices, Q and R, that minimize the

distance between the elements of the desired and LQR

achievable eigenstructures. The minimization is accomplished

by using a simplex based optimization routine. Specific

weightings placed on the elements of the desired

eigenstructure define the relative importance of each element.

The algorithm is programed in FORTRAN and is designed to be

run from the software package MATLAB. Two examples are

examined to illustrate the use of the program, including a

helicopter flight control system. The results show that this

algorithm is a valid technique for achieving robust

eigenstructrue assignment with full state feedback.

xi



AN ALGORITHM FOR ROBUST EIGENSTRUCTURE

ASSIGNMENT USING THE LINEAR QUADRATIC REGULATOR

I. Introduction

Many current aerospace systems require very complex

control systems to provide the desired performance and

system stability simultaneously. The dynamics of these

system are approximated by mathematical models which are

then used to develop feedback control laws. Most of these

system models require multiple inputs and have multiple

outputs (MIMO). These MIMO models can be broken down into a

series of single input/single output (SISO) subsystems, but

this can make determining the cross coupling effects between

the various SISO subsystems extremely difficult. Classical

control system design techniques, developed prior to the

availability of today's computer capability, often require

multiple input systems to be broken down in this way. These

techniques do not lend themselves to automation through

relatively simple computer programming because many

subjective decisions are required throughout the design

process to achieve the best mix between desired performance

and system stability. The requirement for numerous

subjective decisions makes the control system design for
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complex systems excessively cumbersome and time consuming

when using classical design techniques.

Eigenstructure assignment and the Linear Quadratic

Regulator (LQR) are two control system design techniques

that have been developed to produce stable MIMO systems with

good performance characteristics. Both techniques can be

used to develop feedback controls for MIMO systems without

breaking the systems down into SISO subsystems.

Eigenstructure assignment provides the advantage of allowing

great flexibility in shaping the closed loop system response

by allowing specification of closed loop poles and

eigenvectors, but has the disadvantage that stability

robustness is not guaranteed. The LQR technique assures

stability robustness with full state feedback but does not

provide the flexibility of eigenstructure assignment in

placing closed loop poles and eigenvectors. This thesis

develops a method that has the flexibility of eigenstructure

assignment within the stability constraints of LQR.

Backqround

Eigenstructure assignment is a technique that allows a

control system designer to specify the desired closed loop

performance characteristics of a MIMO system. These

performance characteristics are specified through desired

eigenvalues and eigenvectors, i.e. the desired closed loop

eigenstructure. Moore [1] showed how to exploit the fact

that specifying the closed loop eigenvalues of a MIMO system
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does not result in a unique solution. Moore further

demonstrated that a specific number of elements of each

eigenvector of a closed loop MIMO system can be freely

assigned. Other papers, including Sobel, Yu, and Lallman

[2] and Garrard and Liebst [3,4], have developed algorithms

to achieve the desired eigenstructures for closed loop

systems. A helicopter flight control system example used by

Garrard and Liebst [3] is used as one example in Chapter IV

of this report. The validity of eigenstructure assignment

as a flight control system design tool has been

experimentally investigated by Calico [5].

LQR is an optimal control design method that results in

a system with guaranteed robustness. Anderson and Moore [6]

have shown that use of the LQR design method results in gain

and phase margins of at least (-6,-) db and (-60,60) degrees

respectively. The state and control weighting matrices for

the LQR cost function must be selected by the designer in an

attempt to achieve the desired system performance. The

desired system performance characteristics (or the desired

eigenstructure) often do not lie within the achievable

solution space of LQR. A paper by Innocenti and Stanziola

[7] compares the robustness achievable through

eigenstructure assignment to that guaranteed by the LQR

method.

Other researchers have developed eigenstructure

assignment methods that use LQR. Wilson and Cloutier [8]
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developed a technique that minimized a cost function that

provides a tradeoff between desired eigenvalues and

eigenvectors, allowing some flexibility in the number of

elements assigned in the eigenstructure. The algorithm

developed by Broussard [9] minimizes a cost function

involving the feedback gain matrix; however, this method

requires that the gain matrix associated with the desired

closed loop eigenstructure be calculated first. Harvey and

Stein [10] developed a method that uses the asymptotic

properties of LQR to place eigenvalues and uses a linear

projection to determine the achievable eigenvectors. The F-

4 aircraft example used by Harvey and Stein is the first

example used in Chapter IV of this thesis.

This thesis shows the development of an algorithm that

allows a control system designer to achieve closed loop

eigenstructure close to desired within the constraints of

the LQR stability margins. This report is an extension of

the work of Robinson [11]. Robinson developed an algorithm

using the software package MATLAB to provide eigenvalue

placement using the LQR. This thesis enhances Robinson's

work by adding eigenvector assignment as well.

Problem Statement

Consider the state space representation of the

multivariate, linear, time-invariate feedback system,

k=Ax+Bu (1)
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and

y=Cx
(2)

where

x = n dimensional state vector

u = m dimensional control vector

y = output vector

A, B, C = constant matrices of appropriate dimensions

If linear feedback of all of the state variables is provided

in the form,

uL-K x (3)

and (A,B) is controllable, a feedback gain matrix, K, can be

found that shifts the closed loop eigenvalues to any desired

location. LQR can be used with a system of this form.

Anderson and Moore (6] have shown that LQR can be used to

assure closed loop stability robustness by minimizing the

quadratic cost function

J=f (x TQx+ u TRu) dt (4)
0

where,

Q = designer specified state weighting matrix

R = designer specified control weighting matrix

Letting

K=R-IBTp (5)

provides the optimal solution where P is a positive definite

solution to the algebraic Riccati equation,
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PA+ATP+Q-PBR-lBTP=O (6)

For any positive semidefinite, symmetric Q and positive

definite R selected, a feedback gain matrix K can be

determined that will result in an eigenstructure that

provides stability robustness for the closed loop system.

More simply stated, the resulting eigenstructure will always

fall within an allowable LQR region. It is important to

note that the eigenstructure desired by the designer may not

fall within the allowable LQR region.

The problem is then to place the achievable

eigenstructure close to desired while maintaining the

stability robustness characteristics of the LQR.

Methodoloqy

The solution to this problem is accomplished by

introducing a second quadratic cost function,

n
J [f;, 2(Xd-a)2 + (vd,-iv) *Fv (Vd -OjV)] (7)

i=1

where

n = number of states

f= weighting on the ith eigenvalue

1dl= i th desired eigenvalue

),. = ith achievable eigenvalue

Vdi= ith desired eigenvector

V, = ith achievable eigenvector
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Fvi = diagonal weighting matrix for the ith eigenvector

= real or complex constant that minimizes (Vdi-OlVdl)

Equation (7) is minimized over the elements of Q and R,

subject to equations (4)-(6). As J becomes small, the

system comes close to providing the desired closed loop

eigenstructure. This method also allows for individual

weightings to be placed on each element of the

eigenstructure. The weightings can be used to allow an

element to move freely (by setting the weighting to zero) or

to place greater emphasis on an individual element (by

setting the weighting to a larger value than other

weightings).

The algorithm is programmed in FORTRAN and interfaces

with the software package MATLAB. Input parameters are

specified in MATLAB and then the compiled FORTRAN program is

called and run from inside MATLAB.

OrQanization

This report is organized as follows:

* Chapter II contains the theory involved in the

development of the robust eigenstructure assignment

algorithm. Discussions on eigenstructure assignment

and the LQR method are followed by definitions of

stability robustness and a discussion on LQR stability

margins.



* Chapter III develops the robust eigenstructure

assignment algorithm and provides a discussion on the

implementation of the algorithm. Included is a

discussion on the minimization routine used.

* Chapter IV provides examples of the use of the

algorithm. Two examples are shown, including the

examples used by Harvey and Stein [10] and Garrard and

Liebst [3] with their eigenstructure assignment

methods.

" Chapter V gives conclusions resulting from this study

and recommendations for further work in the area of

eigenstructure assignment using the LQR.

" Appendix A contains detailed information on the FORTRAN

subroutines developed by the author that implement this

algorithm.

• Appendix B provides a listing of the source code for

the main FORTRAN program and the subroutines developed

by the author. Also included is a listing of the

MATLAB m-file that interfaces with the FORTRAN program.
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II. Theory

This chapter introduces the theory used in the

development of the robust eigenstructure assignment

algorithm. Included are discussions on eigenstructure

assignment and the LQR method. The chapter is concluded

with discussions on stability robustness and LQR stability

margins.

All of the discussions in this chapter center around

the state space representation of a multivariable, linear,

time-invariate feedback system of the form already given in

equations (l)-(3). These equations are repeated here as

equation (8)-(10) for convenience.

x=Ax Bu (8)

y=Cx
(9)

where,

x = n dimensional state vector

u = m dimensional control vector

y = output vector

A, B, C = constant matrices of appropriate dimensions

Linear feedback of the state variables is assumed in the

form,

u=-Kx (10)

9



Eigenstructure Assignment [1,12]

Again consider the system of equations (8)-(10) with

full state feedback. Assume the matrix B is of full column

rank and the system is both controllable and observable.

This system can be represented by the block diagram of

Figure 1.

r=0 B

- , .K..... . -

Figure 1 - Block Diagram of the Linear System

The state space representation of the closed loop system

becomes

k=(A-BK)x (11)

The closed loop eigenvalues can be determined from the roots

of the characteristic equation

I XiI- (A-BK) I =0 (12)

Examination of equation (12) shows that, if B is of full

column rank, each closed loop eigenvalue can be influenced

by changing the feedback gain matrix K, regardless of the

number of inputs. If a designer has complete flexibility to

10



assign any values to the elements of K, the closed loop

poles can be placed anywhere in the complex plane.

The closed loop right eigenvectors can be determined

from the set of equations given by equation (13) where vi is

the ith closed loop right eigenvector

[)LI- (A-BK) ]v,=O (13)

Equation (13) can be multiplied by any arbitrary constant 0

without influencing the closed loop system. This arbitrary

constant can be real or complex. Equation (13) can be

rewritten to provide insight into the ability to assign

values to elements of the eigenvectors.

(XiI-A)v i +BKv 1 =O (14)

vi=- (XjI-A) -1 B[Kv] (15)

In equation (15), the matrix (1I - A)-1 B is nxm dimensional.

If B is of full column rank, the ability to assign values to

elements of the eigenvectors is then limited by the subspace

spanned by (l I- A)-'B and only m elements of each

eigenvector can be assigned. It is not possible to assign

values to an eigenvector that will cause it to li.e outside

of this subspace. The ability to assign specific values to

elements of the eigenvectors is limited in part by the

column dimension of the B matrix, i.e. the number of inputs

to the system. In addition, when one element of the

eigenvector associated with a complex pole has been

11



specified, the corresponding element of the eigenvector

associated with the complex conjugate of that pole has also

been specified.

The eigenstructure assignment design technique is to

specify the eigenvalues and associated eigenvectors and to

let

wi =Kvi  (16)

Equation (15) may now be rewritten

(IiI-A) v1 =Bwi  (17)

As already shown, all of the eigenvalues can be placed

exactly, so as long as the desired eigenvectors lie within

the achievable subspace the only unknowns in equation (17)

are the elements of each wi. Equation (17) can be solved

for the elements of the wi's. Once the elements of each wi

have been calculated, the gain matrix X can be determined by

combining the set of n equations from equation (16) into a

single matrix equation. Define the matrices W and V as

W=[W 1 W2 .. .wr (18)

VV 1 V2 . .VI (19)

The matrix V containing the right eigenvectors is often

refered to as the modal matrix. Combining equations (16)

yields

12



W=KV (20)

Since the eigenvectors are linearly independent, the V

matrix is nonsingular and equation (20) becomes

K=IPr (21)

In practice, the desired eigenvectors are often not

achievable, not lying within the subspace spanned by

(,XI- A)-'B. This means that a solution for K that will

yield a closed loop system that has the desired eigenvectors

is not possible. One method to get around this problem is

to project the desired eigenvectors onto the achievable

subspace, minimizing the difference between the desired and

achievable vectors. Other researchers have developed

methods to accomplish this. Liebst, Garrard, and Adams [12]

achieve this by introducing a quadratic cost function J eito

be minimized subject to equation (17), where

Jesi = (v8i -vdi) P1 (vai -Vdi) (22)

and where P1 = diagonal weighting matrix for the ih

eigenvector. Equations (17)-(22) are then manipulated to

solve for W and K matrices that come close to providing the

desired eigenstructure. The cigenstructure assignment

method, then, provides a means to specifically place

eigenva]ues and optimally place eigenvectors for a control

system.

13



The algorithm developed in Chapter III of this report

will introduce a cost function that includes that of

equation (22), but will ensure robust stability by

introducing the LQR as a constraint.

Linear Ouadratic ReQulator [13:section 6.1]

Refer again to the full state feedback system with

state equation

x=Ax+Bu (23)

and linear feedback of the state variables defined by

u=-Kx (24)

The B matrix is assumed to be of full column rank. As

already discussed, there is a great deal of flexibility in

designating the closed loop eigenstructure, but the

stability robustness of the closed loop system cannot be

assured. LQR provides a means of guaranteeing closed loop

stability robustness. Stability robustness is guaranteed by

introducing the LQR quadratic performance index

J=f (xTQx+u TRu) dt (25)

where Q and R are symmetric, non-negative weighting matrices

designated by the control system designer to place relative

importance on the states and controls. Minimizing the LQR

performance index, J, will ensure that the deviations of the

14



states from nominal will be kept small without using

excessive control actions.

To ensure that the LQR performance index is finite, and

therefore has a minimum, it is required that all unstable

states can be made stable and that these states are

reflected in the LQR performance index. Requiring -hat the

pair [A,B] be stabilizable will guarantee that all unstable

states can be made stable. Requiring Q to be positive semi-

definite by letting H be any nxn symmetric matrix such that

Q=HrH (26)

and requiring that the pair [A,H] be detectable ensures that

all open loop unstable modes will be seen in the LQR

performance index. Meeting both of *'ese conditions

guarantees the closed loop system will always be stable.

The LQR performance index is minimized when

K=R-IBTp (27)

where P is the unique positive semidefinite solution to the

algebraic Riccati equation given by

PA+ATP+QPBRlBTP=O 
(28)

To use equations (25), (27) and (28), the R matrix must be

invertible and non-negative, and therefore R must be

positive definite (R>O). Defining a symmetric matrix M such

that

15



R=MTM

will ensure that R is positive definite. It can also be

shown that the minimum value of the LQR performance index is

given by

Ji=XT(0) Px(O) (30)

Kwakernaak and Sivan [14] provide further discussion on the

algebraic Riccati equation and the gain matrix for

optimization of the LQR performance index.

Use of the LQR optimal solution for the feedback gain

forces constraints on the closed loop eigenstructure of the

system. The closed loop eigenstructure is forced into a

particular "region" subject to equations (27) and (28). The

achievable LQR region is dependent on the A and B matrices

of a given system. A change to the elements of A or B will

result in a different achievable LQR region. For MIMO

systems a closed form solution for the achievable LQR region

is normally not possible. Thus, when selecting a desired

eigenstructure, a designer cannot be assured that a

particular selection will lie entirely within the achievable

LQR region.

Stability Robustness [13:section 3.2]

A closed loop system is said to possess stability

robustness if it remains stable when uncertainties are

16



present. These uncertainties can be modeled in many ways,

including as additive or multiplicative in nature.

Letting G(s) represent a nominal open loop plant and

Gp(s) represent the perturbed plant, additive perturbations

can be modeled as

Ea (s) =GP(s) -G(s) (31)

and multiplicative perturbations can be modeled as

Era(s) =G- 1 (S) [GP (s)-G(s) ] (32)

The ability of a system to remain stable in the face of

these uncertainties can be estimated by using two robustness

tests

o[Em(s) ] <Q[I+G(s)] (33)

and

O[Ea(S) I <q [I+G -1 (s)] (34)

where a[] represents the maximum singular value of the

enclosed matrix and a[] represents the minimum singular

value of the enclosed matrix.

Linear Quadratic Regulator Stability Margins [13:chapter 7]

The development thus far has demonstrated that LQR will

ensure a stable system. The stability robustness

characteristics of the LQR closed loop system will now be

addressed. To investigate the stability robustness

17



characteristics of LQR, refer once more to the full state

feedback system with state equation

x=Ax+Bu (35)

and linear feedback of the state variables defined by

u=-Kx (36)

Figure 2 shows a simplified block diagram representation of

this full state feedback system. Before continuing with the

discussion of LQR stability, the concepts of the return

difference, independent gain and phase margins, and the

relationship of the Kalman Inequality must be introduced.

r-0 u x
(sl- A)"B 

K

Figure 2 - Simplified Block Diagram for Closed Loop System

For the single input case, the closed loop transfer

function for the system in Figure 2 is

18



TFCL= (J I-A) - b1 +k(j (aI-A) -1b

The l+k(jwI-A)-1b term is referred to as the return

difference function, i.e. the output multiplicative

difference returned to the input of the plant. Stability

for single input systems is typically measured using gain

and phase margins [6:section 5.4]. The gain margin is

defined as the amount the gain k can be changed (increased

or decreased) before the closed loop system becomes

unstable. The system becomes unstable when the value of the

return difference is zero. Phase margin is the amount of

phase shift that can be tolerated before the closed loop

system becomes unstable.

For multiple input systems, the return difference

becomes the matrix I+K(jwI-A)-1 B. The traditional

definitions of gain and phase margin cannot be applied to

mulitiple input systems, so some other measure of system

stability is required. The concepts of independent gain and

phase margins are introduced at this point to provide this

measure of stability. Ridgley and Banda [13] give the

following definitions.

Independent gain margins (IGM) are limits within which
the gains of all feedback loops may vary independently
at the same time without destabilizing the system,
while the phase angles remain at their nominal values.
Independent phase margins (IPM) are limits within which
the phase angles of all loops may vary independently at
the same time without destabilizing the system, while
gains remain at their nominal values.[13:3-73]
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Ridgley and Banda [13:chapter 3] also derive the following

equations for IGM and IPM

1 < IGM< 1 (38)
1+a 1-a

and

-2sin - (1) <IPM<2sin- (1) (39)
2 2

where a is the minimum singular value of the return

difference matrix given by

,infa aI+K(jcjI-A) -1B]

and ct l. It should be noted that these equations for the

MIMO stability margins are based on errors that are

multiplicative in nature and they are conservative. A

system may be able to accept more gain and phase change than

the IGM and IPM reflect.

The following relationship, known as the Kalman

Inequality, can be derived using the state equation (8), the

optimal gain equation (27), the algebraic Riccati equation

(28), and the restriction that Q z 0

1 -1 1 1[I+R K (jw I A) _BR -7] .[I R K (jw I A) IBR - 1a (41)

A detailed derivation of the Kalman Inequality is given by

Ridgely and Banda [13: chapter 7].

Up to this point the only restriction on R is that it

be positive definite. First consider the special case where

20



R=pI, where p is any scalar value. The Kalman Inequality

for this case now reduces to

I -! I _ - (42)[I+p 2 K(j I-A)-Bp 2]*[I+pK(jI-A)-Bp 42I

Because p is a scalar, it cancels out of the equation

leaving

[ I+K(j(AI-A) -1B] * [ I+K(j jI-A) -1B] ->I (43)

This inequality is true if and only if equation (44) is true

where a[] indicates the minimum singular value of the matrix

inside the brackets which is the return difference matrix in

this case

a=. [I+K(j,I-A) -1B] 21 (44)

This equation is of the form of equation (33), and therefore

is a test for stability robustness. Recalling that the

derivations for IGM and IPM are valid for a g 1, a = 1 can

be substituted into equations (38) and (39) to determine the

minimum limits of the LQR stability margins.

1<IGM< (45)2

-600 <IPM<600  (46)

Safonov and Athans [15] have shown that any diagonal R will

result in the same stability margins as long as the

perturbations in each channel occur independently of one

another. The perturbations can be considered independent as
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long as the diagonal elements of R have the same relative

magnitudes. Equations (45) and (46) are the guaranteed

stability margins for LQR with independent perturbations and

R diagonal.

For the case of any general R, the independent

stability margins, as calculated by equations (38) and (39),

cannot be guaranteed and often will go outside of these

bounds. However, as previously mentioned, the equations for

IGM and IPM provide conservative values. While the choice

of any general R may not provide the guaranteed stability

margins of equations (45) and (46), the system may still

provide acceptable stability characteristics.
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III. Robust Eigenstructure Assignment Algorithm

The algorithm developed in this section provides a

designer the capability to achieve a closed loop

eigenstructure close to desired. The resulting system will

also have an eigenstructure within the achievable LQR

region. The algorithm places the eigenstructure by

minimizing the combined distance between the elements of the

desired and LQR achievable eigenstructures. If the desired

eigenstructure is not within the allowable LQR region, the

algorithm will find the gain matrix, K, that achieves a

closed loop eigenstructure close to desired. The designer

must provide a weighting for each element of the

eigenstructure to designate the relative importance of

achieving each element. The algorithm is programed in

FORTRAN and is designed to be run from the software package

MATLAB.

Algorithm Eauations

A quadratic performance index, J, is introduced to be

minimized, where

n
2 [f ,(dilai)+ (Vd-iVa).Fv, (vd _-jva) (47)

and,

n = number of states

f, = weighting on the ith eigenvalue
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)-d i = i" desired eigenvalue

lal = ith achievable eigenvalue

Vdi j th desired eigenvector

v = ith achievable eigenvector

F, =diagonal weighting matrix for the ith eigenvector

0= real or complex constant that minimizes (Vd i-0Va )

Minimizing J will minimize the combined distances between

the elements of the desired and LQR achievable

eigenstructure. The weightings, f~j and Fj, allow the

designer to specify the relative importance of achieving

individual elements of the eigenstructure. Assigning a

weighting of zero to any desired element will leave the

algorithm free to place that element to any necessary value.

As already discussed in Chapter II, the closed loop

system of Figure 1 can be written as

,= (A-BK) x (48)

Using the optimal LQR gain of

K=R-IBTp (49)

the closed loop system becomes

k=(A-BR-IBTP)x (50)

The achievable closed loop poles, X1, are the eigenvalues of

AcL= (A-BR-IB7P) (51)

and the achievable right eigenvectors are given by the
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solution of

[XiI- (A-BR-lBTP) I vi=O (52)

The A and B matrices are fixed for a given system, so the

designer can only influence the closed loop eigenstructure

by varying R and P. However, P, the positive definite

solution of the algebraic Riccati equation, is a function of

both R and Q. Recall that to ensure that R>O and Q-O, the

symmetric matrices M and H were introduced such that

R=MTM , Q=HTH (53)

The designer's ability to influence the closed loop

eigenstructure usirg LQR design is then limited to varying

the symmetric ritrices M and H. Because M and H are

symmetric, tne number of paramaters available to be varied

is limited to the upper triangular portion of each matrix.

If " is restricted to pI or diagonal then the number of

paramaters is reduced further.

One further relationship was derived for use with this

algorithm. It was shown in Chapter II that the eigenvectors

of a matrix can only be determined up to an unknown constant

and that constant may be either complex (for complex

eigenvectors) or real (for real eigenvectors). Let Oi

represent this unknown constant for the ith eigenvector.

Normalizing the eigenvectors to a length of one reduces the

possibilities for 6i to ±1 for the case where the

eigenvectors are real. One value will minimize the
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eigenvector contribution to J and other will maximize the

contribution. The normalized eigenvector becomes

V V.
|orm n ( (54)

E( vj') 2

k-1

Complex eigenvectors must also be normed to unit

length, but the unknown constant can take on any complex

value with a magnitude of one. If the value of 0i is not

determined the algorithm may spend excessive time converging

to, or not achieving, the desired eigenvector when it

possibly has already found an equivalent vector. The sum of

the squared error between the elements of the ith desired

and achievable eigenvector can be defined as Ej, given by

n
E-= EIVd§OEajv 121 (55)

k-1

where the eigenvector is normalized to a length of one and

i =±ej*'=± (cos~i~+jsin~i) (56)

To decrease the computational time, it is desirable to

minimize E1 with respect to 0i since Ej can be written

n

E1 = j IVd - (cosI+jsfinio) vi (57)
k-1

The error, E1 , is an extremum with respect to i when its

partial derivative is equal to zero, or
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0 (58)

Seperating each element of the ith desired and achievable

eigenvectors into real and imaginary components (denoted by

subscripts R and I, the error can be rewritten

n (59)
Ei [(vd,-_,cos(Oi v ,sin~i) 2 +(VdVaRCCS~iaRsin) 2 ]59)

k-1

The partial derivative of E1 with respect to 4i can then be

evaluated

v~ =) n V (60E [sinoi(.IVVd,+VVd.)k+COSi(VazVdR-V drk ] (60)4i k-1

A solution is now possible for 4j and is given by

n

ki=tan-1 = (61)

E (VaVd, ad,) k
k-i

Equation (56) is then used to calculate O. Both the

positive and negative values of Oi must be checked to

determine which minimizes and which maximizes the

eigenvector's contribution to J. The constant O must be

calculated for each eigenvector.

All of the required equations are now in place to

program the algorithm.
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Programinq Considerations

The robust eigenstructure assignment algorithm was

programmed in FORTRAN (double precision) using both existing

and newly developed routines. The main program is called

EIGSPACE. The FORTRAN program interfaces with the software

package MATLAB through an m-file. The routines used are

briefly discussed here.

Existint Subroutines - Several subroutines that were

already in existance were used in programming this

algorithm. These routines are called by the subroutine

EAFUNC. These routines are part of a package of subroutines

called LQGLIB on the AFIT computers. The LQGLIB routines

are adaptations of routines from Alphatec, Inc and are

documented in [16]. The subroutine REG is called by EAFUNC

to calculate the LQR optimal gain matrix K. The subroutine

EIGVV is used to calculate the closed loop eigenstructure.

Subroutine MMUL is used to carry out matrix multiplication.

Newly Develo~ed Suboutines - Each routine developed for

this algorithm is briefly described here. Appendix A

contains more detailed information on each routine,

including a listing of each.

* EAFUNC - This subroutine, called by FMINS, calculates

the value of the performance index J. To achieve this

other routines are called to solve for the closed loop

eigenstructure for a given M and H.
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" FMINS - This subroutine is called by the main program

and is based on the Nelder-Mead simplex algorithm

[17:298-308]. It calculates a vector X that minimizes

a given function. The function to be minimized is

subroutine EAFUNC in this case.

" FMINSTEP - This subroutine is called by FMINS and is a

part of the Nelder-Mead simplex algorithm. It

calculates each subsequent iteration in the search to

minimize J.

* MAKEQR - This subroutine is called by EAFUNC to build

the positive semidefinite Q and positive definite R

matrices from the vector X. The elements of X are the

upper triangular portions of the symmetric matrices M

and H.

* SORT - This subroutine is called by the main program

and EAFUNC. It sorts the eigenvalues in ascending

order of magnitude then puts the weighting matrices Fe

and Fv and the modal matrix W in the same order.

Program Flow - The program can be broken down into the

hierarchical structure shown in Figure 3. The general flow

of each level of the program is discussed here.

LEVEL 1 - The function LQREA.m provides the interface

between MATLAB and the executable FORTRAN file.

Function LQREA.m reads user input from MATLAB,

generates an input file, runs the executable

FORTRAN file, and reads the FORTRAN output.
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LEVEL 1 - MATLAB Interface, LQREA.mI
LEVEL 2 - Main FORTRAN Program, EIGSPACEI

LEVEL 3 - Minimization Routine, FMINS

LEVEL 4 - Minimization Iteration Step
I FMINSTEP

LEVEL 5 - Calculate Performance Index
EAFUNC

Figure 3 - Computer Program Hierarchy

LEVEL 2 - FORTRAN program EIGSPACE and the subroutines it

calls contain the robust eigenstructure assignment

algorithm. The program reads the input data file

generated by LQREA.m. To simplify the

minimization routine, the upper triangular

portions of N and H are put into a single vector

X. The initial guess, XGUESS, is made equivalent

to R=I and Q=I. An initial call is made to FMINS.

Because FMINS may find only a local minimum,

XGUESS is set equal to the returned X vector and

FMINS is called again. In many cases the :,econd

pass through FMINS nroduces a significant

reduction in J. The improvement on subsequent

passes to FMINS is possible because FMINS uses a

simplex search technique that does not rely on the

calculation of gradients. This will be discussed

further in the discussion of LEVEL 3 of the
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program. The calls to FMINS continue until the

reduction in J is within the user specified

tolerance. Subroutine EAFUNC is then called using

the best X vector and the output file is written.

LEVEL 3 - As already mentioned, FMINS is a simplex based

minimization routine. An initial simplex is

created based on XGUESS. The first column of the

simplex is XGUESS. The other columns are

determined by adding an increment to each element

of XGUESS such that

Xi=XGUESS+cI  j=2,3... (nx+l) , i=1,2 (62)

where nx is the dimension of X and ci is

calculated from one of the two following equations

C_ a (vi- +nx_1) , C2= a ( -- ) (63)

In equations (63), a=constant (0.5 for this

report). The choice of ci is defined by Table 1.

The values of cl and c2 remain constant for any

problem size (nx) so the search in FMINS always

starts over a wide range of X vectors. The

routine converges to a local minimum for the space

spanned during the search. Changing XGUESS begins

the search over a different set of vectors,

possibly spanning additional space, so it is often

possible to find a minimum other than the one
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TABLE 1
Constants Added to XGUESS to Build Initial Simplex

k\ j 2 3 . _. nx nx+l

1 c, C 2  . . c 2  C 2

2 C 2  C, C 2  C 2  C 2

. C 2  •_•

• . . _C 2

nx-i C 2  C2  . . C 2  C1  C 2

nx C 2  C 2  . . C 2  C 2  c1

achieved during the previous passes through FMINS.

It is hoped that enough space is spanned to find

the global minimum, but this is not guaranteed.

Subroutine EAFUNC is called to calculate the value

of the performance index for each column of the

simplex. Calls are then made to subroutine

FMINSTEP until the convergence criteria of

Equation (64) is within the user specified

tolerance, tol. The vector X in equation (64) is

the average of the X vectors in the simplex not

including the one yielding the wcrst performance

index and is calculated using equation (65).

EJ= j1 I <to
nx
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S.Xj)-Xworst (65)
nix

The X vector producing the smallest J is returned

to the main program.

LEVEL 4 - Subroutine FMINSTEP calculates each subsequent

itteration in the search to minimize J. A

reflected point is calculated first using the

following equation

Xreflte'=X+ar (X-Xwors8 ) (66)

where ar is a positive constant (a value of 1.0

was used for this report). If Xfl.,Ct,d produces

the smallest of the current values of J, an

expansion point is calculated

Xexx~anion=X+e (Xreflecte-X) (67)

where y. is a positive constant (a value of 2.0

was used for this report). The current vector

producing the worst value of the performance index

is then replaced with the vector (expanded or

reflected) producing the lowest value of J. If

the reflected point did not produce the lowest

performance index then a contracted point is

calculated in one of two ways:

1) If the reflected point produced a J higher
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than all of the current values

Xcontractd X -  (-Xwo rt) (68)

2) If the reflected point produced a J better

than the highest value, but not better than

the lowest then a contracted point is

calculated in the following way

Xcontraced=Xj-c (X-Xzeflecred) (69)

The constant P, must lie between zero and one (a

value of 0.5 was used for this report). If the

reflected or contracted points produce an

improvement in J over any of the current points,

the vector producing the worst value is replaced

by the better of Xr,,f.ctd and Xcontractod. If no

improvement has been acheived, then all of the

points are moved one half the distance to the best

vector.

LEVEL 5 - Subroutine EAFUNC calculates the value of the

performance index J for a given vector X. Recall

that X contains the upper triangular protions of

the symmetric matrices M and H. The subroutine

MAKEQR is called to convert X to the matrices Q

and R. The subroutine REG from LQGLIB is called

to calculate the optimal feedback gain matrix K

for the current R and Q matrices. The subroutine
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EIGVV, also from LQGLIB, is then called to

calculate the closed loop eigenstructure. The

value of J is then calculated.

UsinQ the Proqra

The program is run by using the function LQREA from

within MATLAB. The command takes the following form

[Q, R, P, A., V,, E, 71 =LQREA (A, B, Ad , Fe, Vd, Fv, tol, rcode)

The user must provide the following inputs by defining them

in MATLAB

* A and B

SAd - diagonal matrix containing the desired eigenvalues

* Fe - a diagonal matrix containing the weightings for

each eigenvalue

* Vd - the desired modal matrix

* Fv - a matrix containing the eigenvector weightings;

columns of Fv correspond to columns of Vd

* tol - convergence tolerance (default is 10-3).

* rcode - a code to specify what type of R matrix to use

rocde=l, R=pI

rcode=2, R=[diagonal]

rcode=other, R>O

Available outputs from the program are:

* Q - LQR state weighting matrix

* R - LQR control weighting matrix
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* P - unique positive definite solution to the algebraic

Riccati equation

" - diagonal matrix containing the acheivable closed

loop eigenvalues

* e - diagonal matrix containing the eigenvector

difference minimization parameter

* J - The final value of the performance index

The program normalizes the eigenvectors to one, so to avoid

division by zero each column of the desired modal matrix

must have at least one nonzero element. The program is

configured to handle a system with up to 10 states and up to

10 inputs.
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IV. Examples

Two aircraft control sytem examples are examined in

this chapter to demonstrate the capability of the robust

eigenstructure assignment algorithm. Example 1 is a F-4

lateral inner loop used by Harvey and Stein [10] and later

by Robinson [11:554-564]. The algorithm results are

compared to results obtained by both Harvey and Stein and by

Robinson. Example 2 is a YAH-64 helicopter flight control

system used by Garrard and Liebst [3]. The algorithm

results are compared to the results obtained by Garrard and

Liebst, whose method acheived exact pole placement and good

eigenvector assignment but without the stability robustness

guarantees of the LQR.

Example 1 - F-4 Lateral Inner Loop

As already mentioned, the algorithm developed in this

report is an extension of the work done by Robinson.

Robinson compared the results of his pole placement

algorithm to results from a method developed by Harvey and

Stein using an F-4 example. This example is used here for

two purposes: 1) validate the pole placement portion of the

FORTRAN program in this report through comparison to

Robinson's results, and 2) compare this algorithm's results

for complete eigenstructure assignment to Harvey and Stein's

complete eigenstructure assignment results. The states and
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controls for the F-4 lateral-directional inner loop, as

defined in the paper by Harvey and Stein, are

pa - stability axis roll rate

r s - stability axis yaw rate

- sideslip angleX 4- bank angle

a - rudder deflection

8 a - aileron deflection

[6rc I rudder command
U [ac aileron command

The A and B matrices are

-. 746 .387 -12.9 0 .952 6.05

.024 -.174 4.31 0 -1.76 -.416
.006 -. 999 -. 0578 .0369 .0092 -.0012

1 0 0 0 0 0
0 0 0 0 -20 0
0 0 0 0 0 -10

00 0
0 0

20 00 0
20 0

0 10

Harvey and Stein used the asymptotic properties of LQR to

achieve eigenstructure assignment with the control weighting

matrix restricted to R=pI. The Q matrix is selected and the

value of p is allowed to approach zero. This forces the

feedback gains to become large, approaching infinity. This
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is a disadvantage of their method because m of the poles

(the actuator poles in this case) approach infinity. They

monitor the eigenstructure as p tends to zero (or gain tends

to infinity) and select the system that produces an

eigenstructure close to desired. In the example by Harvey

and Stein, they set the open loop actuator poles artifically

low (-10 and -5) to compensate for this disadvantage.

Except where noted, the actuator poles here are moved to the

more accurate values of -20 and -10 to provide a better

representation of the actual open loop system.

Comparison to Robinson's Results

The pole placement portion of the algorithm developed

in this report differed from Robinson's algorithm only in

that this work is programed in FORTRAN. Robinson's

algorithm was programed as a MATLAB m-file. Table 2 shows a

summary of the pole placement results from this F-4 example

for both programs with R=pI. As expected, the results from

this algorithm (with eigenvector weighting Fv=[0])

essentially duplicated the results obtained by Robinson.

The FORTRAN program was able to acheive a slight improvement

in the performance index J for this case. All of the other

examples reported by Robinson were also run with the FORTRAN

program (again, with Fv=[0]). The FORTRAN program either

duplicated Robinson's results or made a slight improvement

in j for each case.
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TABLE 2
Comparison to Robinson Pole Placement Results

F-4 Example, R=pI

Robinson FORTRAN
MODE ;d MATLAB in-file Program

Roll
Subs. -4.0 -3.998 -4.004

Dutch -.63 ± j2.42 -.669 ± j2.365 -.653 ± j2.375

Roll

Spiral -.05 -.091 -.059

Rudder -20 -20.053 -20.027
Act.

Aileron -10 -10.025 -10.007
Act.

-- .014 .006

K -.306 -1.389 .729 .039 .107 -.089
MATLAB .409 .858 -.060 .035 -.044 .239
rn-file

K -.304 -1.356 .592 .049 .103 -.077
FORTRAN .399 .781 .181 .021 -.038 .236
Porgram

The FORTRAN program produced significant improvements

over Robinson's MATLAB based routine in the required

computational time. Both routines were run on a VAX

computer. For this F-4 example the FORTRAN program took

approximately 19 minutes (clock time) to produce the results

in Table 2 compared to a clock time in excess of 3 hours

using the MATLAB based routine. The FORTRAN also made

similiar time improvements on other examples of various

size. In general, the FORTRAN program improved required

computational time over the MATLAB based routine by a factor

of approximately ten.
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Comparison to Harvey and Stein Method

Robinson provided a comparison between his pole

placement results and the poles achieved with the Harvey and

Stein method [10]. Harvey and Stein also attempted to shape

eigenvectors with their method. The desired eigenvectors

used by Harvey and Stein were not in the achievable LQR

region. As a result, a tradeoff is required between the

desired poles and the desired eigenvectors. The addition of

eigenstruc(ture assignment to the Robinson algorithm now

allows for a more valid comparison between this method and

the Harvey and Stein method.

Harvey and Stein determined the achievable eigenvectors

through a linear projection of the desired vectors onto the

achievable subspace. With their method, as the value of p

approaches zero, the closed loop eigenvectors approach the

achievable projection of the desired vectors. The final

design is selected as the gain matrix that yields the closed

loop poles closest to the desired values.

Some comments are warranted on the selection of desired

eigenvectors. In selecting desired eigenvectors, Harvey and

Stein split the two eigenvectors for the complex conjugate

dutch roll poles into one real vector and one imaginary

vector with different elements allowed to float in each

vector. For example, the real part of one desired

eigenvector element may be allowed to float while the

corresponding imaginary part of that element is assigned a
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fixed value. The algorithm developed in this report

requires that an eigenvector remain intact with the real and

imaginary parts of each element either both designated or

both allowed to float. As the following results will

indicate, this does not proves to be a disad;,intage. With

these comments in mind, Table 3 shows the desired

eigenvectors for this F-4 example.

TABLE 3
Desired Eigenvectors for F-4 Lateral Inner Loop

Roll Dutch Rudder2  Aileron2

State Subs. Roll Spiral Actuator Actuator

pS 1 0 x x x

r, 0 .7073 ± jo x x x

0 .707± j0 3  0 x x

x 0 1 x x

8r  x x x x X

5a  x x x x x

Notes: 1) x's denote elements that are free to float. These
values were set to zero in most cases and given zero
weighting in all cases to run the FORTRAN program (see
note 2)

2) Actuator eigenvectors were given weightings of zero in
all cases. Values specified for these eigenvectors
are to prevent division by zero in the algorithm.

3) Harvey and Stein allow these elements to float.

Harvey and Stein selected these desired eigenvectors for the

following reasons. It is desirable to have the roll

subsidence mode show up predominatly in roll and not in yaw,

so the elements corresponding to yaw rate and sideslip angle

are set to zero. For the dutch roll mode, Harvey and Stein
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desired no oscillatory motion in the roll axis, thus the

desired elements corresponding to roll angle and roll rate

are set to zero. Harvey and Stein desired no sideslip in

the spiral mode, so that element was set to zero for the

spiral mode eigenvector.

Tables 4 and 5 summarize the results obtained -ising the

robust eigenstructure assignment algorithm and the results

from the Harvey and Stein method.

TABLE 4
Results from Robust Eigenstructure Assignment Algorithm for

F-4 Example (R=pI)
Open Loop Actuator Poles of -10 and -5

Roll Dutch Rudder Aileron
Subs. Roll Spiral Actuator Actuat.

Xa -3.994 -. 678±j2.383 -. 051 -20.001 -10.001

Achievable Eigenvectors

PS .850 -.020±j.005 -.051 .072 -.518

r, -.017 .606pj.098 .037 -.089 -.002

-.004 .009±j.228 .008 -.004 -.000

4 -.213 .002±j.008 .998 -.004 -.052

Sr  .078 .251;j.422 .015 -.990 -.212

8a -. 463 .132±j.550 .007 -. 078 .827

Jvec=.874 jx=.007 J=.881

K -. 014 -. 714 1.126 -. 001 .548 .072
.525 .406 -2.934 .026 .065 .846

For this comparison, the original Harvey and Stein open loop

actuator poles of -10 and -5 were used. The desired poles

remain a5s shown in Table 2. Unity weightings were assigned
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TABLE 5
Results from Harvey and Stein Method for F-4 Example

Roll Dutch Rudder Aileron

Subs. Roll Spiral Actuator Actuat.

a. -3.810 -.727±j2.358 -.049 -22.44 -10.43

Acheivable Eigenvectors

Ps .857 -.087;j.081 -.049 -.035 -.523

r. -.005 .610;j.068 .037 .078 .027

-.001 .093±j.231 .000 .003 .003

-.226 -.021±.043 .998 .002 .050

8r  .105 .295;j.400 -.001 .996 -.044

6a  -. 451 .145±j.526 -. 007 -. 029 .849

94 J,=6.17 d=7.11

K .132 .882 -1.576 -.026 -.681 .026
-.524 -.420 2.827 -.021 .031 -.860

Notes: 1) All sigenvectors normed to one.
2) Dutch roll eigenvectors are multiplied by 

9
1 as calculated by equations (56) and

(61).
3) Performance index calculations done using equations (47) using the sae
weightings used for the robust eigenstructure assignment results.

to each desired element with a fixed value. Desired

elements of the eigenvectors that were allowed to float were

assigned weightings of zero. Thus, the following weightings

were used in the robust eigenstructure assingment algorithm

111000"
111000

111100
011100

000000

000000

Comparison of the results from the two methods shows that

the robust eigenstructure assignment algorithm yielded
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values much closer to desired than the Harvey and Stein

method. In particular, the robust eigenstructure assignment

algorithm achieved poles and eigenvectors much closer to

desired than the Harvey and Stein results. The values of

Jvec in Tables 4 and 5 are the eigenvector contributions to

the performance index J in equation (47). Likewise, the

values of J are the closed loop pole contributions to

equation (47). The large value of J. in Table 5 is mainly

due to the large difference between the Harvey and Stein

desired and achievable actuator poles.

The use of the more realistic open loop actuator poles

of -20 and -10 in the Harvey and Stein method would likely

result in extremely large values for the closed loop

actuator poles. The robust eigenstructure assignment method

developed in this thesis does not suffer from the same

deficiency. The algorithm was run again for R=pI with unity

weighting using the realistic open loop actuator poles. The

results for this case are shown in Table 6. The non-zero

value of J in Table 6 shows that the desired eigenstructure

was not achievable using the algorithm. Assuming that the

algorithm was able to find a global minimum for J, this

indicates that the desired eigenstructure in not within the

achievable LQR region. However, it may be possible to

improve on the closed loop eigenstructure through variations

on the weightings assigned to the various eigenstructure

elements.
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TABLE 6
Results from Robust Eigenstructure Assignment Algorithm for

F-4 Example (R=pI)
Open Loop Actuator Poles of -20 and -10

Roll Dutch Rudder Aileron

Subs. Roll Spiral Actuator Actuat.

1. -3.996 -.955±j2.088 -.070 -20.158 -10.002

Achievable Eigenvectors

PS .845 -.163±j.035 -.067 .039 .543

r, .005 .563;j.193 .037 -.086 -.035

.001 .174±j.193 .002 -.004 -.004

4) -.211 .043±j.058 .997 -.002 -.054

'5 .137 .382;j.382 .003 -.995 .003

5a -.473 .269±j.426 -.007 .027 -.837

Jvec.848 J,=.457 J=1.305

K -.175 -1.089 .951 .022 .089 -.072
.539 .562 -2.649 .031 -.036 .336

When the desired eigenstructure lies outside of the LQR

achievable region, the designer must make tradeoffs between

the desired eigenstructure elements. Because not all of the

eigenstructure elements lie within the achievable subspace

for this case, varying the weightings to place greater

emphasis on any particular elements will produce a tradeoff.

Weighting the dutch roll poles more heavily than the other

elements will move those poles closer to desired, but will

result in other elements moving further from desired. If

the pole location is of greater importance than the

decoupling of the states in the dutch roll eigenvectors,

then those poles should be weighted more heavily than the
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other elements. Table 7 presents results from the algorithm

with weightings of 10 placed on each dutch roll pole and all

other weightings remaining the same as before. The closed

loop dutch roll poles moved much closer to desired, but the

decoupling of roll and yaw was sacrificed in the dutch roll

eigenvectors. Increasing the weighting on the dutch roll

poles also moved the other poles a small distance further

away from desired. Further variations on the weightings

between the poles and eigenvectors resulted in similar

tradeoffs between elements.

TABLE 7
Results from Robust Eigenstructure Assignment Algorithm

for F-4 Example with Heavier Weighting on Dutch Roll Poles
(R=pI)

Roll Dutch Rudder Aileron

Subs. Roll Spiral Actuator Actuat.

A -4.023 -.703±j2.331 -.154 -20.321 -10.053

Achievable Eigenvectors

P. .793 -.664±j.225 -.151 -.053 .519

r, .085 .459;j.163 .032 .087 -.001

.021 .117±j.163 -.030 .004 -.001

-.197 .167±j.234 .983 .003 -.052

.354 .176;j.291 -.058 .995 .197

8a -.446 .102±j.148 -.071 .017 -.830

Jvec=2 .124 J,=. 380* J=2.504

K -.310 -1.194 .947 .081 .101 -.056
.487 .819 -1.314 .099 -.028 .297

The error for dutch roll poles is multiplied by weights of 10.
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Removing the R=pI restriction allows the robust

eigenstructure assignment algorithm to place the closed loop

eigenstructure more closely to the desired structure.

Table 8 presents results fo: the R=[diagonal] case, and

Table 9 presents results for the case where R>O. In both

cases the eigenstructure weightings used were the same as

those used for the R=pI case.

TABLE 8
Results from Robust Eigenstructure Assignment Algorithm

for F-4 Example with R=[diagonal]

Roll Dutch Rudder Aileron
Subs. Roll Spiral Actuator Actuat.

la -3.997 -.811±j2.095 -.054 -20.169 -10.004

Achievable Eigenvectors

p5  .851 -.054±j.016 -.054 -.061 -.541

r, -.026 .571j.209 .037 .088 .030

-.006 .173±j.209 .003 .004 .003

-.213 .015±j.020 .998 .003 .054

.053 .316Tj.361 .004 .993 -.033

a -.477 .278±j.496 -.004 -.043 .838

Jvec=.878 3x=.240 3=1.118

K -.068 -.877 .751 .022 .078 .005
.519 .448 -2.78 .024 .033 .330

For the case where R is allowed to be diagonal, Table 8

shows that the algorithm was able to achieve closed loop

poles much closer to desired (3,=.240) than the R=pI case

(J7=.457) while still yielding nearly the same eigenvector
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decoupling. For this case the algorithm returned a R matrix

with significantly different diagonal elements (order of

magnitude 10). The values returned were

R 41.588 0
R = 3.332]

1.2

--------------
1.---------------------------------------------- ------- -

0.6

t

S 0.6-

0.41
____R-rhol

-----------------------1- (diagonal]
R>O

0.2

0L

Frequency (rad/sec)

Figjure 4 F-4 Example Minimum Singular Values for Variations
of R Matrix

As discussed in Chapter II, the large difference in the two

diagonal elements of R indicates that the perturbations

cannot be considered to reside in each individual channel

and the independent stability margins of equations (45) and

(46) not are guaranteed. Figure 4 shows a plot of the

minimum singular value of return difference matrix for the
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case where R=[diagonal] as well as for R=pI and R>O.

This figure shows that the diagonal R does not possess the

independent stability margins guaranteed by R=pI. The

stability margins for case R=[diagonal] are IGM=[.545,6.024]

and IPM=[-49.3,49.3] degrees.

The results for the case where R>0 were as expected.

As can be seen from Table 9, this case acheived the best

overall placement of the closed loop eigenstructure.

TABLE 9
Results from Robust Eigenstructure Assignment Algorithm

for F-4 Example with R>0

Roll Dutch Rudder Aileron

Subs. Roll Spiral Actuator Actuat.

X, -3.992 -.675±j2.376 -.054 -20.005 -10.003

Achievable Eigenvectors

P. .837 -.014±j.004 -.054 -.051 -.543

r, -.025 .578;j.207 .037 .088 .034

-.007 .139±j.207 .003 .004 .004

-.210 .003±j.005 .998 .003 .054

.193 .170;j.457 .004 .995 -.009

6, -.467 .230±j.520 -.004 -.008 .837

J,=.878 j,=.008 J=.886

K -. 265 -. 761 1.748 .004 .048 -. 143
.544 .445 -3.034 .026 .006 .347

The control weighting matrix returned by the algorithm for

this case was
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R =3838 2.3031
= .303 2.499J

The cost for this imp:.ovement was a decrease in the

independent stability margins. The plot of Figure 4 shows

that this case produced the lowest minimium singular value

of the return difference matrix of all of the cases. The

stability margins for this case are IGM=[.611,2.745] and

IPM=[-37.i,37.I] degrees.
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Example 2 - YAH-64 Type Helicopter

Garrard and Liebst [3] used a flight control system

similar to the YAH-64 helicopter at hover flight conditions

to demonstrate the use of their eigenstructure assignment

method. Their method achieved exact pole placement and

minimized the quadratic performance index given by

Jes1 = (Va- vd) *Pi (Vai - Vdi) (22)

to place the closed loop eigenvectors close to desired. The

Garrard and Liebst method does not provide any stability

guarantees.

The eight states and four controls for this helicopter

model are defined as follows

u - forward velocity (f t/sec)

v - lateral velocity (f t/sec)
w - downward velocity (ft/sec)
p - roll rate (rad/sec)
q - pitch rate (rad/sec)

r - yaw rate (rad/sec)

b - roll angle (rad)

6 - pitch angle (rad)

ul - collective pitch (0)

u 2  longitudinal cyclic pitch (0)
u3 lateral cyclic pitch (*)

u4  tail rotor collective pitch (0)

The states and controls are non-dimensionalized by dividing

by the maximum expected values at hover conditions. This
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results in the following non-dimensional state and control

vectors

Xnd= Z , Und 2U (70)

where T, and T2 are transformation matrices and are given by

.04 0 0 0 0 0 0 0

0 .04 0 0 0 0 0 0

0 0 .04 0 0 0 0 0
0 0 0 2.865 0 0 0 0
0 0 0 0 2.865 0 0 0

0 0 0 0 0 2,865 0 0

0 0 0 0 0 0 2.865 0
0 0 0 0 0 0 0 2.865

.111 0 0 0

0 .067 0 0
0 0 .114 0

0 0 0 .054

Equations (70) can be substituted into equations (8) and

(10) resulting in

Xnd- T1AT1 -Xd+7TBT 2 - 1 Und Un =-fTKTI-Xnd (71)

The non-dimensional A, B, and K matrices then become

A ~d=TlA2 1- ,1 Bfd=T IBT2 1  , = 22KT - 
1  (72)

-.0286 -.0637 .0205 .0032 .1113 -.0036 0
.0779 -.2310 .0059 -.1157 -.0014 -.0229 .4468

.0046 -.0257 -.2610 -.0053 .0314 .0306 .0223

.5658 -3.5812 .6804 -2.7000 -.1340 -.6620 0
A.= .3366 .8458 .0143 -.0092 -.7500 .0244 0

.2793 -.3510 .0573 -1.0500 .4130 -.4000 0
0 0 0 1.000 -.0051 .1030 0

0 0 0 0 .9990 .0499 0

53



.1566 .3456 -.0399 -. 0007

-.0569 .0812 .1718 .2087

-. 15372 .0345 -.0087 .0009

-1.1294 -2.57 85 16.2195 4.2402
Bnd= .1857 -4.3405 -2.2562 -.1007

2.0628 .4169 5.0137 -2.4116

0 0 0 0

0 0 0 0

Table 10 shows the resulting open loop eigenstructure.

Notice that the four poles associated with side and forward

velocity are unstable. Also, the yaw and heave modes form

a complex conjugate pair which will result in cyclic motion

coupled in the yaw and vertical axes. In the open loop

eigenvectors there is significant coupling between the

states.
TABLE 10

Open Loop Eigenstructure for Helicopter Example

Side Forward
Roll Pitch Velocity Velocity Yaw/Heave

-3.2610 -.9760 .0820±j.6296 .1100±j.5147 -.25
88
±j.04

2 8

Open Loop Eise-netors

u -.0024 .3605 -.0462:tj,3103 -.0462±j.4723 -.0244Tj.1983

V -.0784 .0102 -.2171tj.1269 -.0979±j.1297 .0616±j.0923

w -.0012 .0525 .0040±j.0241 .0082±j.0341 --0949±j.5468

p -.8923 .0373 .1334Tj. 2 352  -.0066;j.1424 .0850±j.0084

q .0268 -.6131 -.0234:tj.2872 .
0 666

±j.
2 82 8  

.0488±j.0270

r -.3407 .3338 .3382±j.4070 ,4026±3.2892 -.7740Tj.1489

2844 -.0767 - 2699;j.3026 -.1982Tj.1093 -.0231±'.0234

-.0030 .6104 .4785±j.0727 .5862j.0431 -.02
5
7;j.079

9

Desired Eigenstructure - The desired eigenstructure

selected by Garrard and Liebst is shown in Table 11.
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Garrard and Liebst selected desired eigenvalues based on

helicopter handling qualities requirements put forth by Hoh

[18]. The real desired eigenvalues were selected to provide

bandwidths of 3.0 rad/sec for roll, 2.9 rad/sec for pitch,

3.0 rad/sec for yaw, and 1.0 rad/sec for vertical velocity

(heave).

TABLE 11
Desired Eigenstructure for Helicopter Example

Side Forward

Roll Pitch Velocity Velocity Heave Yaw

X -3.5 -2.9 -.802±j.388 -.801±j.387 -1.0 -3.0

Desired Eigenvectors

u 0 x 0 1 0 0

v x 0 1 0 0 0

w 0 0 0 0 1 0

p .9615 0 x 0 0 0

q 0 .9454 0 x 0 0

r 0 0 0 0 0 1

k -.2747 0 x 0 0 0

9 0 -.3260 0 X 0 n
Note: x denotes elements free to float

Selection of the desired eigenvectors was made to

provide decoupling of the states in the various mode

responses. For the eigenvector associated with roll, the

roll rate element was given a magnitude of one. The bank

angle was set to the inverse of the roll eigenvalue due to

assuming a response of the form
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4=ce) : so =p=ACel then 4 =P

The side velocity element for the roll eigenvector is

allowed to float because during rolls some sideslip is

inevitable and not considered objectionable. The other

elements of the roll eigenvector are set to zero to minimize

the content of those states in the roll response. The

desired pitch mode eigenvector was selected based on the

same reasoning used for the roll mode eigenvector. The

eigenvectors associated with the two complex conjugate

eigenvalue pairs were selected to decouple the lateral and

longitudinal states in those modes. The heave and yaw

eigenvectors were selected to produce modes with pure heave

and pure yaw respectively.

Garrard and Liebst Results - Table 12 shows the final

achievable eigenvectors and feedback gain matrix obtained by

Garrard and Liebst for full state feedback. Recall that all

of the poles were placed exactly with their method. The

eigenvectors in Table 11 show excellent decoupling between

the states. The independent stability margins resulting

from this design are IGM=(.599,3.03) and IPM=(-39.1,39.1)

degrees.

The results that follow show that the desired

eigenstructure does not lie within the LQR region obtainable

with the robust eigenstructure assignment algorithm. The

objective of using the robust eigenstructure assignment
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TABLE 12
Garrard and Liebst Helicopter Example Results for Full State

Feedback

Side Forward
Roll ?itch Velocity Velocity Heave Yaw

Achievable Eigenvectors

u .0024 -.1381 .011l8Tj.0303 .4143±jO -.1003 -.0112

v .0890 -.0235 .4737tj0 .0093±j.0332 -. 0181 -. 0386

w 0 -.0293 -.0376±j.0193 -.0024±j0 .9939 -.0028

p .9577 .0041 .3720±.j.4473 .0408±j,0377 .0089 - .005

q .0001 .9357 .0084±3.0581 -.4350T-j.4154 -.0290 - .0073

r -.0002 -.0036 -.0028±j.0056 -.0192Tj.0085 -.0014 .9986

0 -.2736 .0003 -.5943-;j.2705 -.0606TJ.0194 -.0089 -.0321

0 0 -.3223 -.03693j.0549 .6440±j.2075 .0290 -.0142

Knd -.1503 -.0403 -.5006 -.0047 .0356 -.0225 -.0747 .1554
.9957 -.2973 .0060 -.0096 -.7554 -.0873 -.1458 -1.2572
.1794 -.0131 .0957 .0138 -.0278 .1674 .2489 -.1189
.3170 .0018 -,2408 .4557 -.3460 -.7669 .4082 - .3841

Note: ALL values in this table are nondimensionalized

algorithm with this example is then to obtain an

eigenstructure close to desired but with improved stability

margins over the Garrard and Liebst achievable closed loop

eigenstructure.

Robust Eigenstructure Assignment Alg~orithm Results - To

determine if the desired poles were achievable, this case

was first run with zero weighting on the eigenvectors

(Fv=lIO1). The algorithm was able to place all of the poles

very near the desired values (j=.0002). Next, all of the

desired eigenvector elements with assigned values were given

unity weighting as well to determine if the complete desired

eigenstructure was within the achievable region. Table 12

presents results for this case with R>O. A fully populated

R matrix was selected to allow maximum flexibility in
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placing the eigenstructure. The results in Table 13 show

that the complete eigenstructure is not achievable using the

robust eigenstructure assignment algorithm. The closed loop

poles in Table 13 are relatively far from desired

considering they are known to be nearly achievable. The

roll, pitch and yaw poles are nearly identical for this

case. The achievable eigenvectors also show much more

coupling between the st7--t than desired. Variations on the

weightings used for the algorithm can be used to get a more

acceptable closed loop eigenstructure.

TABLE 13
Robust Eigenstructure Assignment Algorithm Results for

Helicopter Example with Unity Weighting and R>O

Side Forward

Roll Pitch Velocity Velocity Heave Yaw

a -3.3430 -3.3137 -.8957tj.6347 -.7272±j.1326 -1.249 -3.3142

Achievable Eigen.actors

U .0181 -.1128 -.0008±j.0023 .49554j0 -.1429 .0782

v .0755 -.0011 .3545Tj0 -.0622Tj.1200 -.0302 .0554

w 0119 - 0354 01-27_.0004 -.1806±j.0734 .9770 .0283

p .8698 .1053 .
2
5
4 6

T.j.612
2  

-.0304j.0727 -.0071 .5633

q -.1583 .8920 .0297;j.0436 -.4722±j.1338 .0569 -.6276

r3697 -.3303 .0628Tj.1918 .0012±J.0038 .1351 .4597

-.2718 -.0201 -.5267±j.3321 .01
9
4±j.10

3 9  
-.0052 -. 1852

9 .0418 -.2640 -.05
2
4±j.0022 .6602Tj.063

7  
-.0509 .1822

)L .2349 .0379 -.7122 -.0958 .1354 .2151 -.0366 .1903
.5684 -.4127 .0122 -.0243 -.8210 -.1037 -.2399 -1.0973
.6354 .1957 .1808 .1223 -.1646 .0106 4657 -.5214

0286 -.3630 -.3567 2135 -2264 -.6013 -.1248 -.1785
Note represents the eigenvalue contribution to performance index J and "vec represents

the eigenvector contribution to J
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One point of interest is worth discussion prior to

proceeding with variations on the weightings. The R matrix

returned by the algorithm for this example is relatively

close to diagonal and the diagonal elements are of the same

relative magnitude. The R matrix returned is

1.2636 .1027 .1968 -. 0817
.1027 1.5340 -. 2174 -. 1977

1968 -. 2174 2.1366 .1330
-. 0817 -. 1977 .1330 1.1704

The significance of this R matrix is that because it comes

close to approximating a diagonal matrix, the minimum

singular value of the return difference matrix is i rly

one. Figure 5 shows a plot of the minimum singular values

of the return difference matrix for this case. The minimum

singular value of .992 for this system yields good

independent stability margins of IGM=(.502,125.0) and

IPM=(-59.5,59.5). The use of R>0 allows the maximum

flexibility in placing the closed loop eigenstructure within

the LQR limitations. It turns out that R being near

diagonal is a general result for all of the cases run with

this example for R>0. Therefore, the flexibility of R>0 can

be utilized and the resulting closed loop systems will still

possess good independent stability margins.

The results in Table 13 provide insight as to what

variations on the weightings should be attempted. The

location of the closed loop poles will determine the speed

and type of the vehicle's response and have a significant
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Figure 5 Helicopter Example Minimum Singular Values for
Unity Weighting Case with R>O

impact on handling qualities, making it important to move

them closer to desired. Increasing the weighting for the

desired poles will move the achievable poles closer to

desired. It appears that the desired amount of decoupling

may be possible for the heave, side velocity, and forward

velocity eigenvectors. The roll, pitch, and yaw

eigenvectors show significant coupling in all three axes

which is not surprising since the three poles are almost

identical. Recall that because the complete eigenstructure

is not achievable, a tradeoff between the various elements

is probably required. Weighting the roll, pitch, and yaw
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eigenvectors more heavily may result in better decoupling in

those vectors, but it also may move the poles further from

desired or cause increased coupling in the other

eigenvectors. On the other hand, decreasing the weighting

on the roll, pitch and yaw eigenvectors will likely allow

the other elements of the eigenstructure to move closer to

desired while possibly still providing some decoupling in

these eigenvectors. These considerations lead to using the

following weightings for the next case:

.5 0 1 1 1 1 1 .5
0 .5 1 1 1 1 3 .5

.5 .5 1 1 1 1 1 .5

.5 .5 0 0 1 1 1 .5
F=44444444] 5 .5 1 1 0 0 1 .5

.5 .5 1 1 1 1 1 .5

.5 .5 0 0 1 1 1 .5

.5 .5 1 1 0 0 1 .5

Table 14 presents the results for this first variation

on the weightings. As expected, the poles are closer to

desired, yielding a much smaller contribution to J

[J,=4(.056)]. The achievable heave, side velocity, and

forward velocity eigenvectors are also slightly improved

over the unity weighting case (Table 13). The lower

weighting on the roll, pitch, and yaw eigenvectors resulted

in values further from desired than the unity weighting

case. The eigenvector associated with the roll mode shows a

large roll yaw rate component. The pitch mode eigenvector
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has large components associated with roll rate and yaw rate

and also has some undesired roll angle content. The yaw

mode eigenvector has a large pitch rate component and a

moderate roll rate component.

TABLE 14
Helicopter Example Results with R>O

First Weighting Variation
Weights:

Poles - 4, Eigenvectors - .5 (roll, pitch, yaw), 1 others

Side Forward
Roll Pitch Velocity Velocity Heave Yaw

Aa -3.5254 -2.9439 -.780
4
±j.

4
74

6  
-.

72 84
±j.

3 339  
-1.0085 -2.8550

Achievable Eigenvectors

u -.0077 -.0945 .0092±j.0157 .4552Tj0 -.0990 .0515

v .0600 .0517 .
4
5
0
5Tj

0  
-.0348Tj.0454 -.0257 .0002

w -.0271 .0127 .0366±j.0085 -.0009±j.0187 .9927 -.0695

p .8489 .4558 .3020Tj.5100 .0017Tj.0070 -.0002 1659

q .0568 .6796 .0113Pj.0396 -.4111±j.3742 -.0304 -.3503

r .4546 -.500F -.1504Tj.0451 .02383j.0594 -.0465 .9069

-.2540 - .1361 -.560
6
±j.

3 1
82 -.0149±j.0137 .0048 -.0915

9 -.0225 -.2221 -.0274±j.0369 .6575Tj.2078 .0324 .1067

,
=4 (

.
0 56 )=

.
22 3  

jvec=l.314+.5(.922)=l.775 J j=l.g98

Knd -.1002 .1096 -.4898 -.0251 .0881 .1128 -.0024 .1568
.6988 -.3288 .0293 -.0454 -.6998 -.0659 -.1979 -1.0365
.4479 .1377 .1349 .0943 -.1489 .1166 .3970 -.3809

-.5061 -.4662 -.3692 .1929 -.0500 -.6003 -.0776 .3729
Note: JA represents the eigenvelue contribution to performance index J and 

3
vec represents

the eigenvector contribution to J.

The achievable poles in Table 14 show a minor problem

encountered in using the algorithm. Recall that the desired

poles for the pitch and yaw modes were -2.9 and -3.0

respectively. The desired pitch mode pole has the smaller

magnitude of the two, but the results in Table 14 show that

the algorithm matched the lower magnitude achievable pole
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(-2.855) with the yaw mode. The reason for this discrepancy

is that the algorithm matches desired and achievable poles

by starting with the lowest magnitude desired pole and

finding the minimum error between that desired pole and all

of the achievable poles. The matched poles are eliminated

from consideration, and the algorithm then matches the

desired pole with the next larger magnitude by comparing the

error between it and all of the remaining achievable poles.

In this case, the two achievable poles for pitch and yaw lie

very close together. The algorithm matched the desired

pitch mode pole first because it has the smaller magnitude

and the achievable pole closest to it was the one with the

larger magnitude. Thus, the desired pitch mode pole was

matched with the larger value, leaving the smaller magnitude

achievable pole to be matched with the yaw mode desired

pole.

The results for one final weighting variation with this

examnle are shown in Table 15 to demonstrate the necessity

of trading off between the requirements for the various

elemonts of the desired eigenstructure. For this case the

eigei values were again assigned weights of four while the

roll mode eigenve-tor elements were given weights of 0.5.

Elements of all other eigenvectors were assigned weightings

of unity.

Comparison of the Table 15 results to the results for

the first weighting variation in Table 14 reveals that the
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TABLE 15
Helicopter Example Results with R>O

Second Weighting Variation
Weights - Poles: 4, Eigenvectors: .5 (roll), 1 others

Side Forward
Roll Pitch Velocity Velocity Heave Yaw

Aa  -3-5638 -2.8680 -.7197±j.3490 -.8593±j.3178 -.9867 -2.9933

Achievable Eigenvectors

u -.0104 -.1276 -.0029±j.0258 .4480±j0 -.0938 .0051

v .0516 -.0081 .4624±j0 -.04345j.0418 - 0127 -.0338

w -.0437 -.1109 .0535±j.0077 -.0097±j.0227 .9937 -.1565

p .8032 .1094 .4532Tj.3726 -.0111tj.0059 .0167 -.0109

q .0844 .9240 .0221.j.0564 -.3944±j,3862 -.0382 .0084

r .5331 -.0222 .0408Tj.0794 .1163Tj.1253 -.0045 .9864

-.2407 -.0373 -.
6
12

3
±j.

216 3  
-.0082±j.0085 -.0167 -.0303

e -.0311 -.3222 -.
0
475±j.0

5 26  
.6438Tj.2153 .0389 -.0192

7\-4(.0387)-.151 Jv,-1.Q0GB-5( .9828)=1.522 31673

Xnd -.1522 .1385 -.4831 -.0557 .1592 .1906 .0350 .2004
.7082 -.3502 .0307 -.0575 -,7115 -.0775 -.2454 -1.0428
.3232 .0986 .1158 .0836 -.0688 .1567 .4161 -.2677

-.3853 -.3815 -.3324 .1769 -.1402 -.6619 -.1723 .3178
Note: A represents the eigenvalue contribution to performance index J and 

3
vec represents

the aigenvector contribution to j.

second variation improved the overall eigenstructure

assignment. The achievable poles in Table 14 are slightly

closer to desired than those resulting from the first

variation. The eigenvectors associated with heave and side

velocity were also slightly closer to desired for the second

variation. The penalty paid for improving the majority of

the eigenstructure was a degradation in the roll mode

forward velocity mode eigenvectors. The complex conjugate

forward velocity eigenvectors moved slightly further away

from desired than in case of the first weighting variation.

The degradation in the roll mode eigenvector was expected,

because it was weighted more lightly than the other
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eigenvectors. The magnitude of the yaw rate component of

this eigenvector increased over the case of the first

weighting variation.

Figure 6 shows a plot of the minimum singular values

for the unity weighting case (Table 13) as well as the two

weighting variation cases (Tables 14 and 15). The singular

values in Figure 4 indicate that the closed loop system of

the unity weighting case possesses the best stability

robustness. However, minimum singular values for the two

other cases are also close to one so these closed loop

systems also possess good independent stability margins.

Table 16 shows the independent stability margins for each of

the three cases.

TABLE 16
Independent Stability Margins for Three Weighting Cases

Helicopter Example

First Second
Unity Weighting Weighting

Weighting Variation Variation

a=min a[I+G] .992 .971 .982

IGM (.502,125.0) (.507,34.8) (.505,54.1)

IPM (0) (-59.5,59.5) (-58.1,58.1) (-58.8,58.8)

Comparison to Garrard and Liebst Results - All three of

the design cases presented using the robust eigenstructure

assignment algorithm yield independent stability margins

superior to those of the Garrard and Liebst results in

Table 12. However, the algorithm was not able to yield the
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Figure 6 Helicopter Example Minimum Singular Values for
Three Weighting Cases

same eigenvector decoupling achieved by Garrard and Liebst.

Figure 7 shows a minimum singular value plot for the return

difference matrices of the Garrard and Liebst full state

design and the design resulting from the second weighting

variation (Table 15). The curves in Figure 6 show that the

robust eigenstructure assignment algorithm design possesses

much better independent stability margins than the Garrard

and Liebst design. Recall that for the Garrard and Liebst

design IGM=(.599,3.03) and IPM=(-39.1,39.1) while the

margins for the algorithm design (from Table 16) are

IGM=(.505,54.1) and IPM=(-58.8,58.8).
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Figure 7 Comparison of Minimum Singular Values of Return
Difference Matrix for Garrard and Liebst Design
and for Robust Eigenstructure Assignment Algorithm
Design.

The algorithm was not able to reproduce the eigenvector

decoupling achieved by Garrard and Liebst due to the

restrictions of the LQP Because the desired eigenstructure

was not entirely with- e achievable region, the designs

resulting from the use ot the algorithm required tradeoffs

between the various elements of the eigenstructure. The

algorithm was able to nearly achieve the desired closed loop

poles and much of the desired decoupling in the

eigenvectors. However, the eigenvector associated with the

roll mode showed a significant yaw rate component that was
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not present in the Garrard and Liebst results. The use of

further variations in the weights could result in a roll

mode eigenvector closer to desired, but this would be

accomplished at the expense of other elements of the

eigenstructure. The poles and/or the other eigenvectors

would be pulled further from desired.

68



VI. Conclusions and Recommendations

The algorithm developed in this thesis provides a

useful tool to robustly assign the closed loop

eigenstructure for full state feedback systems within the

constraints of the LQR. The algorithm achieves this

eigenstructure assignment by minimizing a quadratic cost

function involving the difference between the desired and

achievable eigenstructures. One feature of the algorithm is

the ability to assign relative weightings to each element of

the desired eigenstructure to specify the importance of

achieving particular elements. Another feature of the

algorithm is that the LQR control weighting matrix, R, can

be selected as pI, diagonal, or symmetric positive definite.

Specifying R=pI will guarantee good independent gain and

phase margins, while specifying R>O provides the maximum

flexibility in achieving the desired eigenstructure. These

features provide the user with a great deal of flexibility

in achieving a closed loop eigenstructure close to desired.

Two control system examples were used to demonstrate the use

of the algorithm.

A six state, 2 input F-4 inner loop example served to

verify the pole placement portion of the algorithm through

comparison to results obtained by Robinson. The FORTRAN

code developed for this thesis reduced the requireI

computational time over the MATLAB routine developed by
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Robinson by a factor of approximately ten. This example

also demonstrated the complete eigenstructure assignment

capability of the algorithm to be superior to a method

presented by Harvey and Stein. The algorithm developed in

this thesis placed the closed loop eigenstructure much

closer to desired than the Harvey and Stein method and

resulted in significantly better independent stability

margins.

An eight state, four input helicopter control system

example was also used to demonstrate the algorithm. Garrard

and Liebst used this example to demonstrate their

eigenstructure assignment technique. The Garrard and Liebst

technique, which provides no stability robustness

guarantees, placed the poles at the exact desired locations,

and then assigned the eigenvectors. The desired

eigenstructure for this example was not achievable within

the LQR restrictions, thus producing the requirement to

trade off between the various desired eigenstructure

elements. The algorithm was used to design a system that

provided an eigenstructure close to desired but with

improved stability robustness over the Garrard and Liebst

design. The resulting system did have better stability

robustness and placed the majority of the eigenstructure

close to desired. However, the required tradeoff resulted

in an undesired and significant yaw rate component in the

eigenvector associated with the roll mode.
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The development of this algorithm provides several

opportunities for further research. While the FORTRAN code

developed for this thesis made significant speed

improvements over the MATLAB based routine, further

improvements are possible. The source code in Appendix B

can be made more efficient to provide speedier operation, or

an even faster minimization routine can be used with the

algorithm. A second area to be investigated is the

inclusion of the control/state cross coupling matrix in the

LQR performance index. The LQR performance index can be

rewritten as follows

JI U]V 1jQ dt

where N is a weighting matrix defining the cross coupling

between the states and controls. This matrix can be

included in the algorithm, thus providing even greater

flexibility in achieving closed loop eigenstructures. One

final area for further research is the addition of a state

estimator. Realistically, full state feedback is seldom (if

ever) available in actual systems, so a state estimator

could be implemented with the loop transfer recovery

technique to regain the LQR stability margins. The validity

of this method for aircraft control system design should

then eventually be evaluated through flight test.
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Appendix A
Subroutine Descriptions

This appendix provides detailed information on each

FORTRAN subroutine written by the author. Included for each

routine are a short description, required inputs, available

outputs, and calls made to other routines.

SUBROUTINE SORT

This subroutine sorts eigenvalues in ascending order
then puts columns of the modal matrix in the same order.
The eigenvalue weighting vector and the columns of the
eigenvector weighting matrix are also r-rdered. The
calling statement is

call SORT(N,edg,ed,maged,Fes,Fe,WDESS,WDES,Fvs,Fv)

Inputs

N - dimension of system A matrix
edg - N dimensional vector of unsorted desired

eigenvalues
Fes - N dimensional vector of unsorted eigenvalue

weightings
WDESS - N x N dimensional matrix of unsorted

eigenvectors
Fvs - N x N dimensional matrix of unsorted eigenvector

welghtings

Outputs

ed - N dimensional sorted eigenvalue vector
maged - N dimensional eigenvalue magnitude vector
Fe - N dimensional sorted eigenvalue weighting vector
WDES - N x N dimensional sorted modal matrix
Fv - N x N dimensional sorted eigenvector weighting

matrix

Calls

DSVRGP (IMSL sorting routine [19])
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SUBROUTINE EAFUNC

This subroutine calculates the value of the performance

index J and the closed loop eigenstructure for given Q and R

matrices. Form of call statement is

call EAFUNC(nx,X,RJ)

Inputs

nx = size of X vector

X = vector of the upper triangular portions of H and M

Outputs

RJ = value of performance index J

Inputs Passed to EAFUNC Through Common Block

Open loop A and B matrices
n = dimension of A
m = dimension of B
ed = nxl desired eigenvalue vector (complex)
Fe = nxl weighting vector for eigenvalues
WZFS = nxn modal matrix
Fv = nxn matrix whose columns weight corresponding

columns of WDES
iwrite = code automatically set in main program

designating when to write to output file
nrcode = code specifying what type of R matrix to use

1 - R=OI
2 - R=[diagonal]
other - R>0

Outputs Passed to Main Program Throuqh Common Block

ea = nxl vector of achievable eigenvalues in ascending
order

G = mxn LQR optimal gain matrix
ACL = nxn closed loop A matrix
WACH = nxn achievable modal matrix
-aipna = nxl vector of eigenvector difference

minimization
parameter

Calls

MAKEQR, REG, EIGVV, WNORM, SORT, IMINS
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SUBROUTINE FMINS

This subroutine finds the H and K matrices that
minimize the performance index calculated in subroutine
EAFUNC. The Nelder-Mead simplex algorithm is used to
perform the minimization. The calling statement is

call FMINS(NX,XGUESS,X,tol,NXPl,v,Fvec,vs,vss,ievalmax)

Inputs

NX - dimension of the X vector
XGUESS - NX dimensional initial guess vector containing

the upper triangular portions of the H and M
matrices

tol - user defined convergence tolerance (default=.001)
NXP1 - NX + 1
ievalmax - maximum number of simplex iterations

Outputs

X - NX dimensional vector with upper triangular
portions of H and M yielding the lowest values of
J

v - NX x NXPl matrix whose columns contain a simplex of
guess vectors

Fvec - NXP1 dimensional vector of J values for each
column of simplex v

vs - NX dimensional scratch vector
vss - NX x NXP1 dimensional scratch matrix

Calls

EAFUNC, DSVRGP (IMSL sorting routine [19]), FMINSTEP
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SUBROUTINE FMINSTEP

This subroutine calculate each subsequent simplex
iteration in the minimization effort. It is part of the
Nelder-Mead simplex algorithm. The calling statement is

call FMINSTEP(v,NX,NXPi,Fvec,vr,vk,ve,vt,vs,vss,vc,vbar)

Inputs

v - NX x NXP1 simplex whose columns are guess vectors
NX - dimension of X vector
NXP1 - NX + 1
Fvec - NXP1 dimensional vector of J values for each

column of simplex v

Outputs

v - NX x NXP1 simplex whose columns are guess vectors
Fvec - NXP1 dimensional vector of J values for each

column
of simplex v

vr - NX dimensional vector containing reflected point
vk - NX dimensional scratch vector
ve - NX dimensional vector containing expanded point
vt - NX dimensional scratch vector
vs - NX dimensional scratch vector
vss - NX x NXP1 dimensional scratch matrix
vc - NX dimensional vector containing contracted point
vbar - NX dimensional vector containing average vector

Calls

EAFUNC, DSVRGP (IMSL sorting routine [19])

75



SUBROUTINE MAKEQR

This subroutine builds the Q and R matrices from the
upper triangular portions of the symmetric matrices H and M.
The calling statement is

call MAKEQR(N,M,NX,X,Q,R,RM,QH,nrcode)

Inputs

N - dimension of Q and H matrices
M - dimension of R and M matrices
NX - dimension of X vector
X - NX dimensional vector of the upper triangular

portions of matrices H and M
nrcode - interger designating what type of R matrix to

use
1 - R=pI
2 - R=[diagonal]
3 - R>O

Outputs

Q - N x N positive semi-definite LQR state weighting
matrix

R - M x M positive definite LQR control weighting
matrix

RM - M x M symmetric M matrix where R=MTM
QH - N x N symmetric H matrix where Q=-HTH

Calls

MMUL (LQGLIB routine)
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SUBROUTINE WNORM

This subroutine normalizes the eigenvectors to one.
The calling statement is

call WNORM(WVEC,N)

Inputs

WVEC - N dimensional eigenvector
N - dimension of eigenvector

Output

WVEC - N dimensional normalized eigenvector

Calls

none
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Appendix B

Subroutine Source Codes

This appendix contains the source code listings for all

of the FORTRAN subroutines written by the author. Also

included is a listing of the m-file that provides their

interface between MATLAB and the FORTRAN routines.

78



PROGRAM EIGSPACE
IMPLICIT COMPLEX*16 C
IMPLICIT REAL*8 (A-B,D-H,O-Z)
COMMON /INOU/KIN, KOUT
COMMON A,B,ed,ea,G,NR,NA,ND,M,N,NN,ACL, Fv,Fe,

+ WDES,WACH,calpha, iwrite,nrcode
DIMENSION X(65),A(l0,lO),B(l0,l0),R(lQ,l0),Q(l0,10),

1 RK(lO,1Q),G(10,l0),ACL(lO,l0),Fv(l0,lO),Fe(lO)
DIMENSION XGUESS(65),XS(65),GRAD(65),

1 X2(65)
DIMENSION v(65,66),Fvec(66),vs(65),vss(65,66),

+ Fvecl(66)
DIMENSION FeS(lO) ,FvS(l0,1O)
DIMENSION edr(l0),edi(l0),wdessr(l0,l0),wdessi(l0,l0)
REAL*8 maged(l0)
COMPLEX*16 ea(l0),edg(l0),WDES(l0,10),WACH(10,l0)
COMPLEX*16 ed(10),WDESS(l0,10),calpha(10)
INTEGER IPERMM(66) ,IPERMD(l0)
EXTERNAL PPFUNC, DMACH, DUMCGF
open(UNIT=10,FILE='brad.dat' ,STATUS='old')
open(UNIT=9, FILE=' PPOUT.DAT' ,STATUS='old')
rewind 10
rewind 9
KIN=5
KOUT=6

C -- - - - - - - - - - - - - - - - - - - - - - - - - -
C - set integers specifying array sizes
c and assign values to scaling vector for X
C - - - - - - - - - - - - - - - - - - - - - - - - - - -

iwrite=o
read(l0,*) N
NA=N
NN=2*N
NA2=N*N
ND=NN* (4*N+3)

C----------------------------------------------------------------------------
c - read values for A matrix - file should have a
c list of values starting with the dimension of
c the A matrix, followed by the values of A listed
c by column (i.e. column 1 followed by column 2 ... )

c -- next is the column dimension of the B matrix
c followed by the values for B listed by column
C----------------------------------------------------------------------------

jj=l
icount=0
do 10 i=l,NA2

icount=icount+ 1
if(icount.eq.ll) then

jj=jj+l
icount=l

endif
read(l0,*) A(icountjj)
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10 continue
C- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

c - read the values for the B matrix
C- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

read(1Q,*) M
NR=M
NB=N*M
j j=1
icount=0
do 20 i=1,NB

icount= icount+ 1
if(icount.eq.11) then

icount=1
jj=jj+1

endif
read(10,*) B(icount,jj)

20 continue
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

c - read the desired eigen values
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

do 30 i=l,N
read(10,*) FeS(i),edr(i),edi(i)
edg(i)=DCMPLX(edr(i) ,edi(i))

30 continue
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

c - read the desired eigenvectors and the
c associated weighting
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

jj=1
icount=0
do 35 i=l,NA2

icount= icount+ 1
if(icount.eq.ll) then

icount=1
jj=jj+1

endif
read (1O,*) FvS(icount,jj),wdessr(icount,jj),

+ wdessi(icount,jj)
WDESS(icount,jj)=DCMPLX(wdessr(icount,jj),

+ wdessi(icount,jj))
35 continue

C- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

c - read convergence tolerence, maximum number of
c evaluations and code specifying type of R
C- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

read(l0,*) tol
read(10,*) ievalmax
read(l0,*) nrcode
if(tol.lt.0.OdO) tol=.O0ldO

C- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

c -sort desired eigenvalues and eigenvectors in order
c of ascending eigenvalue modulas and normalize

80



c eigenvectors to one
C-- - - - - - - --

call SORT(N,edg,ed,maged,IPERMD,FeS,Fe,WDESS,
1 WDES,FvS,Fv)
call WNORM(WDES,N)

C- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

c - set initial guess for R and Q. The values in
c XGUESS are the upper triangular portions of matrices
c M and H. Q and R are calculated in subroutne
c MAKEQR.
C- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

ix=0
if(nrcode.eq.l) then

XGUESS (1) =1. OdO
ix=l
goto 51

endif
if(nrcode.eq.2) then

do 41 i=l,M
ix=ix+l
XGUESS(ix)=1.0d0

41 continue
else

icount=0
do 50 i=l,M

icount=icount+ 1
do 40 jj=icount,M

ix=ix+l
XS (ix) =1.OdO
X (ix) =0.OdO
if(icount.eq.jj)then
XGUESS(ix)=l.OdO

else
XGUESS (ix) =0.Odo

endif
c write (9,*) XGUESS(ix)

40 continue
50 continue

end if
51 continue

c
icount=0
do 70 i=l,N

icount=icount+l
do 60 jj=icount,N~

ix=ix+l
XS (ix) =1.OdO
X(ix)=0.Odo
if(icount.eq.4j) then
XGUESS(ix)=i.OdO

else
XGUESS (ix) =0.OdO
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endif
60 continue
70 continue

do 80 i=1,ix
XS (ix) =1. Odo

80 continue
ixpl=ix+l

C- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

c - initialize X,Fvec,Fvecl,vs and vss
---C- - -

do 91 i=l,ix
X(i)=Q.OdQ
vs(i)=0.OdO

91 continue
do 93 i=l,ixpl

Fvecl (i) =0.OdO
do 92 jj=1,ix

vss(jj ,i)=0.OdO
92 continue
93 continue

C- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

c - Call FMINS for first time
C- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

CALL FMINS(ix,XGUESS,X,tol, ixpl,v,Fvecl,vs,vss,
+ IPERMM,ievalmax)

C- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

c - Reset XGUESS to X returned from FMINS
C- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

kcount=0
do 100 i=l,ix

XGUESS (i) =X (i)
100 continue

C

110 continue
kcount=kcount+l
do 120 i=l,ix

X2 (i)=0.Odo
120 continue

do 121 i=1,ix
X2 (i)=0.Odo
vs (i) =0.Odo

121 continue
do 123 i=1,ixpl

Fvec (i) =0.OdO
do 122 jj=1,ix

vss (j j , i) =0. OdO
122 continue
123 continue

c- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
c - Make next call to FMINS
c- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

call FMINS(ix,XGUESS,X2,tol, ixpl,v,Fvec,vs,
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+ vss, IPERMM, jevalmax)
C- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

c - Reset XGUESS to X2 returned from FMINS
C- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

do 130 i=l,ix
XGUESS(i)=X2 (i)

130 continue
C- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

c - Determine if another itterations is required
C- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

delJ=dabs (Fvecl (1)-Fvec (1))
if (Fvecl(l).lt.Fvec(l)) goto 141
if (Fvecl(1).gt.Fvec(1)) then

Fvecl (1)=Fvec(1)
do 140 i=1,ix

X(i)=X2 (i)
140 continue

endif
if (delJ.gt.tol.and.kcount.lt.50) goto 110

141 continue
C- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

c - Make final call to EAFUNC to write output file
c - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

iwrite=l
CALL EAFUNC(ix,X,RJ)
end
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SUBROUTINE SORT(N,edg,ed,maged,IPERMD,FeS,Fe,WDESS,
1 WDES,FvS,Fv)
IMPLICIT COMPLEX*16 C
IMPLICIT REAL*8 (A-B,D-H,O-Z)
DIMENSION FeS(N) ,Fe(N) ,FvS(N,N),Fv(N,N)
REAL*8 maqed(N)
INTEGER IPERMD(N)
COMPLEX*16 edg(N) ,ed(N) ,WDESS(N,N) ,ODES(NN)

c
c - sort the desired eigenvalues in ascending order then
c put the weighting matrices Fe and Fv and eigenvector
c matrix WDES in the same order
c

do 36 i=l,N
maged(i)=dsqrt( (dreal(edg(i)) ) **2+(dimag(edg(i)) ) **2)
IPERMD(i) =i

36 continue
call DSVRGP(N,maged,maged, IPERMD)
do 37 i=l,N
ed(i)=edg(IPER.MD(i))
Fe(i)=FeS(IPERMD(i))
do 38 jj=1,N
WDES(jj,i)=WDESS(jj,IPERMD(i))
Fv(jj, i)=FvS (jj, IPERMD(i))

38 continue
37 continue

return
end
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SUBROUTINE FMINS (NX,XGUESS,X,TOL,NXP1,v, Fvec,vs,
" vss, IPERMM, jevalmax)
IMPLICIT COMPLEX*16 C
IMPLICIT REAL*8 (A-B,D-H,O-Z)
DIMENSION XGUESS(NX) ,X(NX) ,v(NX,NXP1) ,Fvec(NXP1),

" vs(NX),vss(NX,NXPl),vr(65),vk(65),ve(65),
" vt(65),vc(65),vbar(65)
INTEGER IPERMM(NXP1)

C
icallf=0
icount=0

C- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

c - Build initial simplex near XGUESS
c v(i,j)=simplex matrix
c vs(i)=scratch vector
c Fvec(i)=function values corresponding to v(i,j)
C columns
c- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

xnx=dflotj (NX)
aa=0. 5d0
p=aa*(dsqrt(xnx+l.OdO)+xnx-l.OdO)/(xnx*dsqrt(2.OdO))
q=aa*(dsqrt(xnx+l.OdO)-l.OdO)/(xnx*dsqrt'2.OdO))
do 1010 i=l,NX

v(i, l)=XGUESS(i)
vs (i) =v (i, 1)
X (i) =XGUESS (i)

1010 continue
icallf=icallf+l
call eafunc(NX,vs,Fv)
Fvec (1)=Fv
i=1
do 1040 jj=l,NX

do 1020 kk=l,NX
vs (kk) =X (kk)

1020 continue
i=jj+1
do 1030 kk=l,NX

if(jj.eq.kk) then
v (kk, i) =vs (kk) +p

else
v(kk,i)=vs(kk)+q

endif
vs (kk) =v (kk, i)

1030 continue
icall f=icallf+1
call EAFUNC(NX,vs,Fv)
Fvec (i) =Fv

1040 continue
C- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

c - sort the simplex in order of increasing Fvec(i)
c IPER14M(i)=vector of index of sorted simplex
c sort is in ascending order
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c vsum(i)=sununation of abs(v(:,i)
C- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

do 1050 i=1,NXPl
IPERI4M(i)=i

1050 continue
C

call DSVRGP(NXPl,Fvec,Fvec,IPERMM)
do 1070 i=1,NXP1

do 1060 jj=1,NX
vss(jj ,i)=v(jj'i)

1060 continue
1070 continue

do 1090 i=l,NXP1
do 1080 jj=l,NX

v(jj ,i)=vss(jj ,ipermm(i))
1080 continue
1090 continue

C- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

c iterate until the specified tolerance, tol, is
c met
c- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1100 continue
if(icount.gt.ievalmax) goto 1130
test=0.OdO
vsum=0. OdO
do 1120 i=2,NXPl

do 1110 jj=1,NX
vsum=dabs(v(jj,i)-v(jj,1))+vsum

1110 continue
test=dmaxl ts, vsum)

1120 continue
if(test.le.tol) go to 1130

c- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
c initialize vr,vk,ve,vt,vs,vss,vc,vbar
c- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

do 1121 i=1,NX
vr(i)=0.OdO
vk(i)=0.OdO
ye Ci) =0.OdO
vt(i)=0.OdO
vs (i) =0.OdO
vc(i)=0.OdO
vbar(i)=0.OdO
do 1122 jj=l,NXPl
vss(i,jj)=O.OdO

1122 continue
1121 continue

c- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
c - Calculate the next step in the simplex
c- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

call FMINSTEP(v,NX,NXP1, Fvec,vr,vk,ve,vt,vs,vss,
+ vc,vbar,IPERMM)
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icount=icount+l
goto 1100

1130 continue
do 1140 i=I,NX

X(i)=v(i, 1)
1140 continue

return
end
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SUBROUTINE FMINSTEP(v,NX,NXPl,Fvec,vr,vk,ve,
+ vt,vs,vss,vc,vbar,IPERMM)
IMPLICIT COMPLEX*16 C
IMPLICIT REAL*8 (A-B,D-H,O-Z)
DIMENSION v(NX,NXPI),Fvec(NXPI) ,vr(NX) ,vk(NX),

+ ve(NX),vt(NX),vs(NX),vss(NX,NXPI),vc(NX),
+ vbar(NX)
INTEGER IPERMM(NXPl)
icall=0
alpha=l.OdO
beta=0.5d0
gamma=2.0dO
xnx=dflotj (NX)

c
c - Calculate average vector
c

do 2020 i=l,NX
vb=O.OdO
do 2010 jj=l,NX
vb=vb+v(ijj)

2010 continue
vbar(i)=vb/xnx

2020 continue
c
c - Calculate reflected point
c

do 2030 i=l,NX
vr(i)=vbar(i)+alpha*(vbar(i)-v(i,NXPl))

2030 continue
icall=icall+l
call EAFUNC(NX,vr,fr)
do 2040 i=1,NX
vk(i)=vr(i)

2040 continue
fk=fr
if(fr.lt.Fvec(l)) then

c
c - Calculate expanded point
c

do 2050 i=l,NX
ve(i)=vbar(i)+gamma*(vr(i)-vbar(i))

2050 continue
icall=icall + 1
call EAFUNC(NX,ve,fe)
if(fe.lt.Fvec(l)) then

do 2060 i=l,NX
vk(i)=ve(i)

2060 continue
fk=fe

endif
else

c
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c - Calculate contracted point
c

if(fr.ge.Fvec(NXPl)) then
do 2070 i=l,NX

vt (i) =v (i,NXPI)
2070 continue

ft=Fvec(NXPl)
else

do 2080 i=l,NX
vt(i)=vr(i)

2080 continue
ft=fr

endif
do 2090 i=l,NX
vc(i)=vbar(i)-beta*(vbar(i)-vt(i))

2090 continue
icall=icall+l
call EAFUNC(NX,vc,fc)
if(fc.lt.Fvec(NX)) then

if(fc.ge.fr) goto 2135
do 2100 i=1,NX
vk(i)=vc(i)

2100 continue
fk=fc

else
c
c - Move point half the distance to the best point
C

do 2120 i=2,NX
do 2110 jj=I,NX

v(jj,i)=(v(jj,i)+v(jj,i) )/2.OdO
vs(jj)=v(jj,i)

2110 continue
icall=icall+l
call EAFUNC(NX,vs,Fv)
Fvec(i)=Fv

2120 continue
do 2130 i=l,NX
vk(i)=(v(i,I)+v(i,NXPl) )/2.OdO

2130 continue
icall=icall+l
call EAFUNC(NX,vk,fk)

2135 endif
endif
do 2140 i=I,NX

v (i, NXP1) =vk (i)
2140 continue

Fvec(NXP1)=fk
do 2150 iii=l,NXPl

IPERMM(iii)=iii
2150 continue

c
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c - Resort the simplex
C- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

call DSVRGP(NXP1, Fvec, Fvec, IPERMM)
do 2170 i=l,NXP1

do 2160 jj=l,NX
vss(jj, i)=v(jj, i)

2160 continue
2170 continue

do 2190 i=l,NXPl
do 2180 jj=l,NX

v(jj ,i)=vss(jj ,IPERMM(i))
2180 continue
2190 continue

return
end
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SUBROUTINE EAFUNC(NX, X,RJ)
IMPLICIT COMPLEX*16 C
IMPLICIT REAL*8 (A-B,D-H,O-Z)
COMMON /INOU/KIN, KOUT
COMMON A,B,ed,ea,G,NR,NA,ND,M,N,NN,ACL,Fv, Fe,

+ WDES, WACH, caipha, iwrite,nrcode
DIMENSION X(65),A(l0,lO),B(l0,l0),R(l0,lQ),Q(l0,10),
1 RK(10,l0),G(l0,l0),ACL(l0,l0),Fv(l0,10),Fe(l0),Fes(10)
DIMENSION DtM(860,1),IDUM(20),WR(l0),WI(l0),Z(lO,10),
1 IVl(l0),FVl(l0),ACLS(l0,l0)
COMPLEX*16 ea(lQ) ,WDES(l0,lQ) ,WACH(l0,l0),
1 WDESS(l0,10),WACHS(l0,l0),calpha(l0)
COMPLEX*16 ed(lO),cedif (10) ,edtmp(lO) ,eatmp(l0)
REAL*8 magea(10)

C- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

c -this subroutine calls the cost function subroutine,
c allowing variable arrays to be set
C- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

PJ=O. Odo
do 176 i=1,10

ea(i)=DCMPLX(0. OdO,0. OdO)
do 177 jj=l,10
ACL(i,jj)=O.OdO
WACH(i,jj)=dcmplx(0.OdO,O.OdO)
G(i,jj)=0.OdO

177 continue
176 continue

C

call EA(NX,X,RJ,NR,NA,ND,N,M,NN,A, B,R,Q,RK,G,ACL, Fv,
1 Fe, Fes,DUM, IDUM,WR,WI, Z, IV1,FV1,ea,ed,WDES,WACH,cedif,
2 edtmp, eatmp,magea,ACLS ,WDESS ,WACHS, calpha, iwrite,
3 nrcode)

C

RETURN
END

C-------------------------------------------------------------------
C-------------------------------------------------------------------
C-------------------------------------------------------------------

SUBROUTINE EA(NX,X,RJ,NR,NA,ND,N,M,NN,A,B,R,Q,RK,G,ACL, Fv,
1 Fe,Fes,DUM,IDUM,WR,WI,Z, IVl,FVl,ea,ed,WDES,WACH,cedif,
2 edtmp, eatmp,magea,ACLS,WDESS ,WACHS, calpha, iwrite, nrcode)
IMPLICIT COMPLEX*16 C
IMPLICIT REAL*8 (A-B,D-H,O-Z)
COMMON / INOU/KIN, KOUT
DIMENSION X(NX),A(N,N),B(N,M),R(M,M),Q(N,N),
1 RK(N,N),G(M,N),ACL(N,N),Fv(N,N),Fe(N),WNORMA(l0),
2 FvS(lO,1O),FeS(N)
DIMENSION DUM(ND,l),IDUM(NN),WR(N),WI(N),Z(N,N),IVl(N),

1 FV1(N)
DIMENSION RM(l0,10) ,QH(10,10)
DIMENSION edifmag(10) ,ACLS(N,N)
DIMENSION FvDUM(10,10),FeDUM(10,l0)
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COMPLEX*16 ea(N),ed(N),WDES(N,N),WACH(N,N),WDESS(N,N),
1 WACHS(N,N),calpha(N)
COMPLEX*16 cedif(N),edtmp(N),eatmp(N)
INTEGER IPERMA(10),imin(10)
REAL*8 magea(10)
LOGICAL ELIM

c
c set required constants
c

IPRT=0
c

if(iwrite.ne.0) then
write(9,*) N
write(9,*) M

endif
c
c - calculate the Q and R matrices
c

CALL MAKEQR(N,M,NX,X,Q,R,RM,QH,nrcode)
if(iwrite.ne.0) then
do 557 i=l,M

do 556 jj=l,M
write (9,*) R(jj,i)

556 continue
557 continue

do 555 i=l,N
do 554 jj=l,N
write(9,*) Q(jj,i)

554 continue
555 continue

endif
c
c calculate the lqr gain matrix, G
c

CALL REG(NA,NR,N,M,NN,A,B,Q,R,RK,G,ACL, DUM,IDUM,IPRT)
do 528 i=l,N

do 529 jj=I,N
ACLS(i,jj)=ACL(i,jj)

529 continue
528 continue

c
c - calculate the new closed loop eigenvalues
c

ipc=l
CALL EIGVV(NA,N,ACLS,WR,WI,Z,IV1,FV1,IPC,IERR)

c
c - put the achievable eigenvectors into matrix WACHS
c

if(iwrite.ne.0) then
do 530 i=l,N

do 5555 jj=l,N
write (9,*) RK(jj,i)

92



5555 continue
530 continue

do 531 i=l,N
do 532 jj=l,M

write(9,*) G(jj,i)
532 continue
531 continue

endif
C

icomplex=O
do 539 i~1,N

if(WI(i) .ne.0.OdO) icomplex=icomplex+l
539 continue

NCMP=N- icomplex/2
i i=O
do 540 i=l,NCMP

ii~ii+l
if(dabs(WI(ii)).gt.0.0) then
do 535 jj=l,N
WACHS(jj,ii)=DCMPLX(Z(jj,ii),Z(jj,ii+1))
WACHS(jj,ii+l)=DCONJG(WACHS(jj ,ii))

535 continue
ii=ii+l

else
do 536 jj=1,N
WACHS (jj, ii)=DCMPLX(Z (jj ,ii),0. OdO)

536 continue
endif

540 continue
C- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
c - normalize the eigenvectors
c- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

call WNORM(WACHS,N)
c- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
c - find the poles that are closest to each other and
c take their difference

C -- calculate the magnitude of the poles and sort in
c ascending order
c- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

do 30 i=l,N
eatmp(i)=dcmplx(WR(i) ,WI(i))

30 continue
c- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
c -- sort achievable eigenvalues in ascending order
c and put eigenvectors in same order
c- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

call SORT(N,eatmp,ea,magea,IPERMA,FeDUM,FeDUM,
+ WACHS ,WACH, FvDUM, FvDUM)

c- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
c -- put eigenvalues, eigenvectors, and weightings
c into scratch arrays for calculations
c- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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40 continue
if(iwrite.ne.0) then
do 43 i=l,N

eareal=dreal (ea(i))
eaimag=dimag(ea(i))
write(9,*) eareal
write(9,*) eaimag

43 continue
endif
do 41 i=l,N

eatmp(i)=ea(i)
edtmp(i)=ed(i)
FeS(i)=Fe(i)
do 42 jj=1,N
WACHS(jj,i)=WACH(jj,i)
WDESS (j j , i) =WDES (j j , i)
FvS(jj,i)=Fv(jj,i)
if(iwrite.ne.0) then
wreal=dreal(wach(jj, i))
wimag=dimag(wach(j j, i))
write(9,*) wreal
write(9,*) wimag

endif
42 continue
41 continue

c
c -- find the acheivable poles closest to desired
c and calculate the difference
c

jjj=0
do 501 jj=l,N

do 502 kk=l,N
if(Fv(jj,kk).ne.0.OdO) jjj=jjj+l

502 continue
501 continue

NL=N
RJ=O. OdO
do 50 i=l,N

c
c -- calculate difference between desired poles
c and each remaining acheivable pole
c

do 51 jj=l,NL
cedif(jj)=edtmp(l)-eatmp(jj)

51 continue
c
c -- find the minimum difference for the current
c desired pole
c

do 56 jj=l,NL
edifmag(jj)=dsqrt(dreal(cedif(jj))**2+

+ dimag(cedif(jj))**2)
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56 continue
call imins(NL,edifmag, imin(i))

c
RJVEC=0. OdO
if(jjj.eq.0) then

if(iwrite.ne.0) then
write(9,*) jjj
write(9,*) j--j
goto 503

endif
endif

C- - - - - - - - - - - - - - - - - - - - - - - - - -

c - calculate the caipha for the eigenvectors
C- - - - - - - - - - - - - - - - - - - - - - - - - -

suml=0. OdO
sum2=0. OdO
if(dimag(eatmp(iii)).ne.0.OdO) then

do 584 jj=l,N
suml=suml+dimag(WDESS(jj ,l) )*dreal(WACHS(jj ,iii))

+ -dreal(WDESS(jj,l))*dimag(WACHS(jj,iii))
sum2=sum2+dreal(WDESS(jj ,l) )*dreal(WACHS(jj ,iii))

+ +dimag(WDESS(jj,l))*dimag(WACHS(jj,iii))
584 continue

phl=datan2 (sumi, sum2)
calphal=dcmplx(dcos(phl) ,dsin(phl))
calpha2=-l*calphal

else
calphal=(l. OdO,0. OdO)
calpha2=-l*calphal

endif
C- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

c determine which caipha produces minimum cost
C- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

DELWIl=O. OdO
DELW12=0. OdO
do 585 jj=l,N
DELWI1=FvS (j, 1) * ((DREAL(WDESS (j, 1)-

+ calphal*WACHS(jj ,iii))) **2
+ +(DIMAG(WDESS(jj,l)-calphal*WACHS(jj,iii)))**2)
+ +DELWIl

DELW12=FvS (jj,l) * ((DREAL(WDESS (jj,l)-
+ calpha2*WACHS (jj ,iii))) **2
+ +(DIMAG(WDESS(jj,l)-calpha2*WACHS(jj,iii)))**2)
+ +DELW12

585 continue
if(DELWIl.lt.DELWI2) then
DELWI=DELWI 1
caipha i=calpha 1

else
DELWI=DELWI 2
calphai=calpha2
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endif
RJVEC=DELWI
if (iwrite.ne.0) then

do 587 jj=1,N
if(eatmp(iii).eq.ea(jj)) calpha(jj)=calphai

587 continue
if(i.eq.N)then

do 586 jj=l,N
alreal=dreal (caipha (jj))
alimag=dimag (calpha (jj))
write(9,*) aireal
write(9,*) alimag

586 continue
endif

endif
503 continue

C- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

c -- add this pole's contribution to J
c- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

RJ=RJ+FeS(1) *edifmag(iii) **2+PJVEC
c- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
c -- reset the eigenvalue/vector arrays to eliminate
c those poles already matched up. Program will
c reset the achievable values by
c skipping the set that had the minimum eigenvalue
c difference modulas.
c Tile desired values are reset by
c eliminating the first set (this is the eigenvalue
c that was used to calculate cediffi).
c - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

k= 0
NL=-NL- 1
do 52 jj=l,NL

k=k+l
ELIM=jj .eq. iii
IF(ELIM) K=k+l
eatmp (jj) =eatmp (k)
edtmp(jj)=edtmp(jj+l)
FeS(j;j)=FeS(jj+l)
if(jjj.eq.0) goto 591
do 590 kk=1,N

WACHS(kk,jj)=WACHS (kk,k)
WDESS (kk, jj )=WDESS (kk, jj+l)
FvS(kk,jj )=FvS(kk,jj+l)

590 continue
591 continue
52 continue
50 continue

c
if (iwrite.ne.0) write(9,*) RJ

c
RETURN
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END
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SUBROUTINE IMINS (NL, EDIFMAG, I)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION EDIFMAG (NL)
i=1
do 5000 jj=1,nl

if(dabs(edifmag(jj)).lt.dabs(edifmag(i))) i=jj
5000 continue

return
end
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SUBROUTINE WNORM(WVEC,N)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION WNORMV(10)
COMPLEX*16 WVEC(N,N)
do 5 il,N
WNORMV(i) =0. OdO

5 continue
do 10 i=l,N
do 20 jj~l,N
WNORMV(i)=WNORMV(i)+(dreal(WVEC(jj,i) ))**2+

+ (dimag(WVEC(jj ,i5)))**2
20 continue
10 continue

do 30 iN1,N
do 40 jj=1,N
WVEC(jj ,i)=WVEC(jj ,i)/dsqrt(wnormv(i))

40 continue
30 continue

return
end
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SUBROUTINE MAKEQR(N,M,NX, X, Q,R, RM,QH, nrcode)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION X(NX) ,Q(N,N) ,R(M,M)
DIMENSION RM(M,M) ,QH(N,N)

C- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C - this subroutine takes the upper triangular portion
c of matrices H and M (input through vector X)
c and returns the symmetric positive definite
c Q and R matrices
c -nrcode=l then R=rho*I, nrcode=2 then R~diagonal
C -any other nrcode yields R free to be full
c- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

ix=0
if(nrcode.eq. l.or.nrcode.eq.2) then

i x= 1
do 116 i=l,M

do 117 jj=l,M
if(i.eq.jj) then
RM(i,jj)=X(ix)

else
RM(i,jj)=O.OdO

endif
117 continue

if(nrcode.eq.2) ix=ix+1
116 continue

else
icount=0
do 101 i=1,M

icount=icount+l
do 102 jj=icount,M

ix=ix+l
RM(i,jj)=X(ix)
RM(jj ,i)=X(ix)

102 continue
101 continue

endif
icount=O
do 111 i=1,N

icount=icount+1
do 112 jj=icount,N
ix=ix+ 1
QH (i, jj) =X(ix)
QH(jj ,i)=X(ix)

112 continue
111 continue

c- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
c - calculate the matrix products QHt*QH and RMt*RM
c which is the same as HQ*QH and pJ4*RJ because both
c are symmetric
c- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

call MMUL(M,M,M,M,M,M,RM,RM,R)
call MMUL(N,N,N,N,N,N,QH,QH,Q)
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return
end
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function [Q,R,P,ea,va,e,Jbar]=LQREA(a,b,ed,Fe,vd,Fv,tol,rcode)
%LQREA Eigenstructure assignment using the Linear Quadratic
% Regulator.
% Form is
% [Q,R,P,ea,va,theta,Jbar]=LQREA(a,b,ed,Fe,vd,Fv,tol,rcode)
% Input parameters,
% a=nxn A matrix, b=nxm B matrix
% ed=nxn diagonal matrix of desired eigenvalues
% Fe=nxl matrix weighting each eigenvalue% vd=nxn matrix whose columns are the desire eigenvectors

% -must be in same order as associated eigenvalues% Fv=nxn matrix whose elements weight corresponding
% elements of vd
% tol=convergence tolerance for performance index

% rcode=determines type of R
% (1) R=ro*I
% (2) R=[diag]

% (other) R=positive definite
% Output parameters,
% ea=nxn diagonal matrix of acheivable eigenvalues
% va=nxn matrix of acheivable eigenvectors
% O=nxl vector of value that minimizes the difference
% between desired and acheivable eigenvectors
% Jbar=final value of performance index
% P=unique positive definite solution to Riccati equation
% Q,R=final state and control weighting matrices
[nr,nc]=size(a) ;
[mr,mc]=size(b);
n=nr;
m=mc;
at=a (:);
bt=b(:);
for i=l:n,

edd(i,l)=Fe(i);
edd(i,2)=real(ed(i,i));
edd(i,3)=imag(ed(i,i))

end
vdd(:,l)=Fv(:);
vdd(:,2)=real(vd(:));
vdd(:,3)=imag(vd(:));
ievalmax=1000;
save brad.dat n at m bt edd vdd tol ievalmax rcode /ascii
!run eigspace
load ppout.dat
count=l;
n=ppout(count);
count=count+l;
m=ppout(count);
count=count+l;
n2=n*n;
m2=m*m;
nm=n*m;
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R=zeros (m, m);
R(: )=ppout(count:count+m2-1);
count=count+m2;
Q=zeros (n, n) ;
Q( :)=ppout(count:count+n2-1);
count=count+n2;
P=zeros(n,n) ;
P(:)=ppout(count:count+n2-1);
count=count+n2;
K=zeros(m,n);
K (: )=ppout (count: count+nm- 1);
count=ccount+nm;
ea=zeros(n,n);
for i=1:n
ea(i,i)=ppout(count)+j*ppout(count+1);
count=count+2;

end
va=zeros(n,n);
for jj=1:n
for i=1:n
va(i,jj )=ppout(count)+j*ppout(count+1);
count=count+2;

end
end
theta=zeros(n,n);
for i=1:n
theta( i, i)=ppout(count)+*ppout(counti-);
count=count+2;

end
Jbar=ppout (count);
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